Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where T. Sakamoto is active.

Publication


Featured researches published by T. Sakamoto.


Astrophysical Journal Supplement Series | 2013

The Swift-BAT Hard X-Ray Transient Monitor

Hans A. Krimm; Stephen T. Holland; R. H. D. Corbet; Aaron B. Pearlman; Patrizia Romano; J. A. Kennea; Joshua S. Bloom; S. D. Barthelmy; W. H. Baumgartner; James R. Cummings; Neil Gehrels; Amy Lien; Craig B. Markwardt; David M. Palmer; T. Sakamoto; M. Stamatikos; T. N. Ukwatta

The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.


Nature | 2009

A glimpse of the end of the dark ages: the gamma-ray burst of 23 April 2009 at redshift 8.3

Nial R. Tanvir; Derek B. Fox; Andrew J. Levan; Edo Berger; K. Wiersema; J. P. U. Fynbo; A. Cucchiara; T. Kruehler; N. Gehrels; J. S. Bloom; J. Greiner; P. A. Evans; E. Rol; F. E. Olivares; J. Hjorth; P. Jakobsson; J. Farihi; R. Willingale; Randall C. Starling; S. B. Cenko; Daniel A. Perley; Justyn R. Maund; J. Duke; R. A. M. J. Wijers; A. J. Adamson; A. Allan; M. N. Bremer; D. N. Burrows; A. J. Castro Tirado; Brad Cavanagh

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.


Scopus | 2010

GRB 081028 and its late-time afterglow re-brightening

Raffaella Margutti; Guido Chincarini; C. Guidorzi; Ji-Rong Mao; A. Moretti; F. Pasotti; F. Genet; Jonathan Granot; R. B. Duran; Patricia Schady; T. Sakamoto; S. D. Barthelmy; N. Gehrels; Adam A. Miller; J. S. Bloom; D. Starr; G. Olofsson; P. A. Evans; J. P. U. Fynbo; Daniele Malesani; D. N. Burrows; P. W. A. Roming

Swift captured for the first time a smoothly rising X-ray re-brightening of clear non-flaring origin after the steep decay in a long gamma-ray burst (GRB): GRB 081028. A rising phase is likely present in all GRBs but is usually hidden by the prompt tail emission and constitutes the first manifestation of what is later to give rise to the shallow decay phase. Contemporaneous optical observations reveal a rapid evolution of the injection frequency of a fast cooling synchrotron spectrum through the optical band, which disfavours the afterglow onset (start of the forward shock emission along our line of sight when the outflow is decelerated) as the origin of the observed re-brightening. We investigate alternative scenarios and find that the observations are consistent with the predictions for a narrow jet viewed off-axis. The high on-axis energy budget implied by this interpretation suggests different physical origins of the prompt and (late) afterglow emission. Strong spectral softening takes place from the prompt to the steep decay phase: we track the evolution of the spectral peak energy from the gamma-rays to the X-rays and highlight the problems of the high latitude and adiabatic cooling interpretations. Notably, a softening of both the high and low spectral slopes with time is also observed. We discuss the low on-axis radiative efficiency of GRB 081028 comparing its properties against a sample of Swift long GRBs with secure E(gamma,iso) measurements.


Nature | 2006

Swift Detects a Remarkable Gamma-Ray Burst, GRB 060614, That Introduces a New Classification Scheme

Neil Gehrels; Jay P. Norris; Vanessa Mangano; S. D. Barthelmy; David N. Burrows; Jonathan Granot; Yuki Kaneko; C. Kouveliotou; Craig B. Markwardt; P. I. Meszaros; Ehud Nakar; Ja Nousek; Paul T. O'Brien; M. J. Page; D. M. Palmer; Ann Marie Parsons; Pwa Roming; T. Sakamoto; C.L. Sarazin; Patricia Schady; M. Stamatikos; Goddard Nasa; Brera Observ.; Menlo Park Kipac; Huntsville Usra; Marshall Nasa; U Leicester; Mullard Space Sci. Lab.; Astron. Dept. Virginia U.; Santa Cruz Uc

Gamma-ray bursts (GRBs) are known to come in two duration classes, separated at ∼2 s. Long-duration bursts originate from star-forming regions in galaxies, have accompanying supernovae when these are near enough to observe and are probably caused by massive-star collapsars. Recent observations show that short-duration bursts originate in regions within their host galaxies that have lower star-formation rates, consistent with binary neutron star or neutron star–black hole mergers. Moreover, although their hosts are predominantly nearby galaxies, no supernovae have been so far associated with short-duration GRBs. Here we report that the bright, nearby GRB 060614 does not fit into either class. Its ∼102-s duration groups it with long-duration GRBs, while its temporal lag and peak luminosity fall entirely within the short-duration GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short-duration GRBs. This combination of a long-duration event without an accompanying supernova poses a challenge to both the collapsar and the merging-neutron-star interpretations and opens the door to a new GRB classification scheme that straddles both long- and short-duration bursts.Gamma ray bursts (GRBs) are known to come in two duration classes, separated at {approx}2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its {approx}102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts.


3rd International Conference on New Frontiers in Physics, ICNFP 2014 | 2015

The CALorimetric Electron Telescope (CALET) for high-energy astroparticle physics on the International Space Station

O. Adriani; Yosui Akaike; Katsuaki Asano; Y. Asaoka; M. G. Bagliesi; G. Bigongiari; W. R. Binns; S. Bonechi; M. Bongi; J. H. Buckley; G. Castellini; Michael L. Cherry; G. Collazuol; Ken Ebisawa; V. Di Felice; H. Fuke; T. G. Guzik; T. Hams; M. Hareyama; N. Hasebe; K. Hibino; M. Ichimura; Kunihito Ioka; M. H. Israel; A. Javaid; Eiji Kamioka; K. Kasahara; J. Kataoka; Ryuho Kataoka; Y. Katayose

The CALorimetric Electron Telescope (CALET) is a space experiment, currently under development by Japan in collaboration with Italy and the United States, which will measure the flux of cosmic-ray electrons (and positrons) up to 20 TeV energy, of gamma rays up to 10 TeV, of nuclei with Z from 1 to 40 up to 1 PeV energy, and will detect gamma-ray bursts in the 7 keV to 20 MeV energy range during a 5 year mission. These measurements are essential to investigate possible nearby astrophysical sources of high energy electrons, study the details of galactic particle propagation and search for dark matter signatures. The main detector of CALET, the Calorimeter, consists of a module to identify the particle charge, followed by a thin imaging calorimeter (3 radiation lengths) with tungsten plates interleaving scintillating fibre planes, and a thick energy measuring calorimeter (27 radiation lengths) composed of lead tungstate logs. The Calorimeter has the depth, imaging capabilities and energy resolution necessary for excellent separation between hadrons, electrons and gamma rays. The instrument is currently being prepared for launch (expected in 2015) to the International Space Station ISS, for installation on the Japanese Experiment Module - Exposure Facility (JEM-EF).


Nature | 2009

A gamma-ray burst at a redshift of z~8.2

Nial R. Tanvir; Derek B. Fox; Andrew J. Levan; Edo Berger; K. Wiersema; J. P. U. Fynbo; A. Cucchiara; T. Krühler; N. Gehrels; J. S. Bloom; J. Greiner; P. A. Evans; E. Rol; F. E. Olivares; J. Hjorth; P. Jakobsson; J. Farihi; R. Willingale; Randall C. Starling; S. B. Cenko; Daniel A. Perley; Justyn R. Maund; J. Duke; R. A. M. J. Wijers; A. J. Adamson; A. Allan; M. N. Bremer; David N. Burrows; A. J. Castro-Tirado; Brad Cavanagh

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.


Scopus | 2011

A photometric redshift of z ∼9.4 for GRB 090429B

A. Cucchiara; Derek B. Fox; Xue-Feng Wu; Kenji Toma; Andrew J. Levan; Nial R. Tanvir; A. Rowlinson; K. Wiersema; Paul T. O'Brien; R. Willingale; T. N. Ukwatta; T. Sakamoto; Edo Berger; Alicia Margarita Soderberg; Ryan J. Foley; T. Krühler; J. Greiner; F. E. Olivares; Aybuke Kupcu Yoldas; L. Amati; Kathy Roth; A. W. Stephens; A. Fritz; J. P. U. Fynbo; J. Hjorth; Daniele Malesani; P. Jakobsson; Andrew S. Fruchter; James E. Rhoads; Robert E. Rutledge

Gamma-ray bursts (GRBs) serve as powerful probes of the early universe, with their luminous afterglows revealing the locations and physical properties of star-forming galaxies at the highest redshifts, and potentially locating first-generation (Population III) stars. Since GRB afterglows have intrinsically very simple spectra, they allow robust redshifts from low signal-to-noise spectroscopy, or photometry. Here we present a photometric redshift of z ~ 9.4 for the Swift detected GRB 090429B based on deep observations with Gemini-North, the Very Large Telescope, and the GRB Optical and Near-infrared Detector. Assuming a Small Magellanic Cloud dust law (which has been found in a majority of GRB sight lines), the 90% likelihood range for the redshift is 9.06 7. The non-detection of the host galaxy to deep limits (Y(AB) ~ 28, which would correspond roughly to 0.001L* at z = 1) in our late-time optical and infrared observations with the Hubble Space Telescope strongly supports the extreme-redshift origin of GRB 090429B, since we would expect to have detected any low-z galaxy, even if it were highly dusty. Finally, the energetics of GRB 090429B are comparable to those of other GRBs and suggest that its progenitor is not greatly different from those of lower redshift bursts.


Nature | 2009

A γ-ray burst at a redshift of z approximately 8.2

Nial R. Tanvir; Derek B. Fox; Andrew J. Levan; Edo Berger; K. Wiersema; J. P. U. Fynbo; A. Cucchiara; T. Krühler; N. Gehrels; J. S. Bloom; J. Greiner; P. A. Evans; E. Rol; F. E. Olivares; J. Hjorth; P. Jakobsson; J. Farihi; R. Willingale; Randall C. Starling; S. B. Cenko; Daniel A. Perley; Justyn R. Maund; J. Duke; R. A. M. J. Wijers; A. J. Adamson; A. Allan; M. N. Bremer; D. N. Burrows; A. J. Castro-Tirado; Brad Cavanagh

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.


Nature | 2009

A |[ggr]|-ray burst at a redshift of z|[thinsp]||[ap]||[thinsp]|8.2

Nial R. Tanvir; Derek B. Fox; Andrew J. Levan; Edo Berger; K. Wiersema; J. P. U. Fynbo; A. Cucchiara; T. Krühler; N. Gehrels; J. S. Bloom; J. Greiner; P. A. Evans; E. Rol; F. E. Olivares; J. Hjorth; P. Jakobsson; J. Farihi; R. Willingale; Randall C. Starling; S. B. Cenko; Daniel A. Perley; Justyn R. Maund; J. Duke; R. A. M. J. Wijers; A. J. Adamson; A. Allan; M. N. Bremer; D. N. Burrows; A. J. Castro-Tirado; Brad Cavanagh

Long-duration gamma-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-alpha emitting galaxy. Here we report that GRB 090423 lies at a redshift of z approximately 8.2, implying that massive stars were being produced and dying as GRBs approximately 630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.It is thought that the first generations of massive stars in the Universe were an important, and quite possibly dominant, source of the ultra-violet radiation that reionized the hydrogen gas in the intergalactic medium (IGM); a state in which it has remained to the present day. Measurements of cosmic microwave background anisotropies suggest that this phase-change largely took place in the redshift range z=10.8 +/- 1.4, while observations of quasars and Lyman-alpha galaxies have shown that the process was essentially completed by z=6. However, the detailed history of reionization, and characteristics of the stars and proto-galaxies that drove it, remain unknown. Further progress in understanding requires direct observations of the sources of ultra-violet radiation in the era of reionization, and mapping the evolution of the neutral hydrogen fraction through time. The detection of galaxies at such redshifts is highly challenging, due to their intrinsic faintness and high luminosity distance, whilst bright quasars appear to be rare beyond z~7. Here we report the discovery of a gamma-ray burst, GRB 090423, at redshift z=8.26 -0.08 +0.07. This is well beyond the redshift of the most distant spectroscopically confirmed galaxy (z=6.96) and quasar (z=6.43). It establishes that massive stars were being produced, and dying as GRBs, ~625 million years after the Big Bang. In addition, the accurate position of the burst pinpoints the location of the most distant galaxy known to date. Larger samples of GRBs beyond z~7 will constrain the evolving rate of star formation in the early universe, while rapid spectroscopy of their afterglows will allow direct exploration of the progress of reionization with cosmic time.Long-duration γ-ray bursts (GRBs) are thought to result from the explosions of certain massive stars, and some are bright enough that they should be observable out to redshifts of z > 20 using current technology. Hitherto, the highest redshift measured for any object was z = 6.96, for a Lyman-α emitting galaxy. Here we report that GRB 090423 lies at a redshift of z ≈ 8.2, implying that massive stars were being produced and dying as GRBs ∼630 Myr after the Big Bang. The burst also pinpoints the location of its host galaxy.


web science | 2007

GRB radiative efficiencies derived from the swift data: GRBs versus XRFs, long versus short

Bing Zhang; En-Wei Liang; Kim L. Page; Dirk Grupe; B-B Zhang; S. D. Barthelmy; D. N. Burrows; Sergio Campana; Guido Chincarini; N. Gehrels; Shiho Kobayashi; P. I. Meszaros; A. Moretti; Ja Nousek; Paul T. O'Brien; J. P. Osborne; Pwa Roming; T. Sakamoto; Patricia Schady; R. Willingale

We systematically analyze the prompt emission and the early afterglow data of a sample of 31 GRBs detected by Swift before 2005 September and estimate the GRB radiative efficiency. BATs narrow band inhibits a precise determination of the GRB spectral parameters, and we have developed a method to estimate these parameters with the hardness ratio information. The shallow decay component commonly existing in early X-ray afterglows, if interpreted as continuous energy injection in the external shock, suggests that the GRB efficiencies previously derived from the late-time X-ray data were not reliable. We calculate two radiative efficiencies using the afterglow kinetic energy E(K) derived at the putative deceleration time (t(dec)) and at the break time (t(b)), when the energy injection phase ends, respectively. At tb XRFs appear to be less efficient than normal GRBs. However, when we analyze the data at tdec, XRFs are found to be as efficient as GRBs. Short GRBs have similar radiative efficiencies to long GRBs despite of their different progenitors. Twenty-two bursts in the sample are identified to have the afterglow cooling frequency below the X-ray band. Assuming epsilon(e) 0:1, we find eta(gamma)(t(b)) usually 90%. Nine GRBs in the sample have the afterglow cooling frequency above the X-ray band for a very long time. This suggests a very small epsilon(B) and/or a very low ambient density n.

Collaboration


Dive into the T. Sakamoto's collaboration.

Top Co-Authors

Avatar

N. Gehrels

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

D. N. Burrows

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

S. D. Barthelmy

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. A. Kennea

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Ja Nousek

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Palmer

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge