Theodore Oliphant
Washington University in St. Louis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Theodore Oliphant.
Nature Medicine | 2005
Theodore Oliphant; Michael Engle; Grant E. Nybakken; Chris Doane; Syd Johnson; Ling Huang; Sergey Gorlatov; Erin Mehlhop; Anantha Marri; Kyung Min Chung; Gregory D. Ebel; Laura D. Kramer; Daved H. Fremont; Michael S. Diamond
Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.
Nature | 2005
Grant E. Nybakken; Theodore Oliphant; Syd Johnson; Stephen Burke; Michael S. Diamond; Daved H. Fremont
West Nile virus is a mosquito-borne flavivirus closely related to the human epidemic-causing dengue, yellow fever and Japanese encephalitis viruses. In establishing infection these icosahedral viruses undergo endosomal membrane fusion catalysed by envelope glycoprotein rearrangement of the putative receptor-binding domain III (DIII) and exposure of the hydrophobic fusion loop. Humoral immunity has an essential protective function early in the course of West Nile virus infection. Here, we investigate the mechanism of neutralization by the E16 monoclonal antibody that specifically binds DIII. Structurally, the E16 antibody Fab fragment engages 16 residues positioned on four loops of DIII, a consensus neutralizing epitope sequence conserved in West Nile virus and distinct in other flaviviruses. The E16 epitope protrudes from the surface of mature virions in three distinct environments, and docking studies predict Fab binding will leave five-fold clustered epitopes exposed. We also show that E16 inhibits infection primarily at a step after viral attachment, potentially by blocking envelope glycoprotein conformational changes. Collectively, our results suggest that a vaccine strategy targeting the dominant DIII epitope may elicit safe and effective immune responses against flaviviral diseases.
Journal of Virology | 2006
Theodore Oliphant; Grant E. Nybakken; Michael Engle; Qing Xu; Christopher A. Nelson; Soila Sukupolvi-Petty; Anantha Marri; Bat-El Lachmi; Udy Olshevsky; Daved H. Fremont; Theodore C. Pierson; Michael S. Diamond
ABSTRACT Previous studies have demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral surface of domain III (DIII) of the West Nile virus (WNV) envelope (E) strongly protect against infection in animals. Herein, we observed significantly less efficient neutralization by 89 MAbs that recognized domain I (DI) or II (DII) of WNV E protein. Moreover, in cells expressing Fc γ receptors, many of the DI- and DII-specific MAbs enhanced infection over a broad range of concentrations. Using yeast surface display of E protein variants, we identified 25 E protein residues to be critical for recognition by DI- or DII-specific neutralizing MAbs. These residues cluster into six novel and one previously characterized epitope located on the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, and the lateral ridge, central interface, dimer interface, and fusion loop of DII. Approximately 45% of DI-DII-specific MAbs showed reduced binding with mutations in the highly conserved fusion loop in DII: 85% of these (34 of 40) cross-reacted with the distantly related dengue virus (DENV). In contrast, MAbs that bound the other neutralizing epitopes in DI and DII showed no apparent cross-reactivity with DENV E protein. Surprisingly, several of the neutralizing epitopes were located in solvent-inaccessible positions in the context of the available pseudoatomic model of WNV. Nonetheless, DI and DII MAbs protect against WNV infection in mice, albeit with lower efficiency than DIII-specific neutralizing MAbs.
Journal of Virology | 2007
Soila Sukupolvi-Petty; S. Kyle Austin; Whitney E. Purtha; Theodore Oliphant; Grant E. Nybakken; Jacob J. Schlesinger; John T. Roehrig; Gregory D. Gromowski; Alan D. T. Barrett; Daved H. Fremont; Michael S. Diamond
ABSTRACT Neutralization of flaviviruses in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Previous studies demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral ridge of domain III (DIII) of the West Nile virus (WNV) E protein strongly protect against infection in animals. Based on X-ray crystallography and sequence analysis, an analogous type-specific neutralizing epitope for individual serotypes of the related flavivirus dengue virus (DENV) was hypothesized. Using yeast surface display of DIII variants, we defined contact residues of a panel of type-specific, subcomplex-specific, and cross-reactive MAbs that recognize DIII of DENV type 2 (DENV-2) and have different neutralizing potentials. Type-specific MAbs with neutralizing activity against DENV-2 localized to a sequence-unique epitope on the lateral ridge of DIII, centered at the FG loop near residues E383 and P384, analogous in position to that observed with WNV-specific strongly neutralizing MAbs. Subcomplex-specific MAbs that bound some but not all DENV serotypes and neutralized DENV-2 infection recognized an adjacent epitope centered on the connecting A strand of DIII at residues K305, K307, and K310. In contrast, several MAbs that had poor neutralizing activity against DENV-2 and cross-reacted with all DENV serotypes and other flaviviruses recognized an epitope with residues in the AB loop of DIII, a conserved region that is predicted to have limited accessibility on the mature virion. Overall, our experiments define adjacent and structurally distinct epitopes on DIII of DENV-2 which elicit type-specific, subcomplex-specific, and cross-reactive antibodies with different neutralizing potentials.
Journal of Virology | 2007
Theodore Oliphant; Grant E. Nybakken; S. Kyle Austin; Qing Xu; Jonathan Bramson; Mark Loeb; Mark Throsby; Daved H. Fremont; Theodore C. Pierson; Michael S. Diamond
ABSTRACT Previous studies have established that an epitope on the lateral ridge of domain III (DIII-lr) of West Nile virus (WNV) envelope (E) protein is recognized by strongly neutralizing type-specific antibodies. In contrast, an epitope against the fusion loop in domain II (DII-fl) is recognized by flavivirus cross-reactive antibodies with less neutralizing potential. Using gain- and loss-of-function E proteins and wild-type and variant WNV reporter virus particles, we evaluated the expression pattern and activity of antibodies against the DIII-lr and DII-fl epitopes in mouse and human serum after WNV infection. In mice, immunoglobulin M (IgM) antibodies to the DIII-lr epitope were detected at low levels at day 6 after infection. However, compared to IgG responses against other epitopes in DI and DII, which were readily detected at day 8, the development of IgG against DIII-lr epitope was delayed and did not appear consistently until day 15. This late time point is notable since almost all death after WNV infection in mice occurs by day 12. Nonetheless, at later time points, DIII-lr antibodies accumulated and comprised a significant fraction of the DIII-specific IgG response. In sera from infected humans, DIII-lr antibodies were detected at low levels and did not correlate with clinical outcome. In contrast, antibodies to the DII-fl were detected in all human serum samples and encompassed a significant percentage of the anti-E protein response. Our experiments suggest that the highly neutralizing DIII-lr IgG antibodies have little significant role in primary infection and that the antibody response of humans may be skewed toward the induction of cross-reactive, less-neutralizing antibodies.
PLOS Pathogens | 2008
Steevenson Nelson; Christiane A. Jost; Qinq Xu; Jessica Ess; Julie E. Martin; Theodore Oliphant; Stephen S. Whitehead; Anna P. Durbin; Barney S. Graham; Michael S. Diamond; Theodore C. Pierson
West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV.
Journal of Virology | 2005
Erin Mehlhop; Kevin Whitby; Theodore Oliphant; Anantha Marri; Michael Engle; Michael S. Diamond
ABSTRACT Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response.
Journal of Virology | 2005
L. Hannah Gould; Jianhua Sui; Harald G. Foellmer; Theodore Oliphant; Tian Wang; Michel Ledizet; Akikazu Murakami; Kristin M Noonan; Cassandra Lambeth; Kalipada Kar; John F. Anderson; Aravinda M. de Silva; Michael S. Diamond; Raymond A. Koski; Wayne A. Marasco; Erol Fikrig
ABSTRACT West Nile virus has spread rapidly across the United States, and there is currently no approved human vaccine or therapy to prevent or treat disease. Passive immunization with antibodies against the envelope protein represents a promising means to provide short-term prophylaxis and treatment for West Nile virus infection. In this study, we identified a panel of 11 unique human single-chain variable region antibody fragments (scFvs) that bind the envelope protein of West Nile virus. Selected scFvs were converted to Fc fusion proteins (scFv-Fcs) and were tested in mice for their ability to prevent lethal West Nile virus infection. Five of these scFv-Fcs, 11, 15, 71, 85, and 95, protected 100% of mice from death when given prior to infection with virus. Two of them, 11 and 15, protected 80% of mice when given at days 1 and 4 after infection. In addition, four of the scFv-Fcs cross-neutralized dengue virus, serotype 2. Binding assays using yeast surface display demonstrated that all of our scFvs bind to sites within domains I and II of West Nile virus envelope protein. These recombinant human scFvs are potential candidates for immunoprophylaxis and therapy of flavivirus infections.
Journal of Immunology | 2009
Hameeda Sultana; Harald G. Foellmer; Girish Neelakanta; Theodore Oliphant; Michael Engle; Michel Ledizet; Manoj N. Krishnan; Nathalie Bonafé; Karen G. Anthony; Wayne A. Marasco; Paul Kaplan; Ruth R. Montgomery; Michael S. Diamond; Raymond A. Koski; Erol Fikrig
West Nile virus is an emerging pathogen that can cause fatal neurological disease. A recombinant human mAb, mAb11, has been described as a candidate for the prevention and treatment of West Nile disease. Using a yeast surface display epitope mapping assay and neutralization escape mutant, we show that mAb11 recognizes the fusion loop, at the distal end of domain II of the West Nile virus envelope protein. Ab mAb11 cross-reacts with all four dengue viruses and provides protection against dengue (serotypes 2 and 4) viruses. In contrast to the parental West Nile virus, a neutralization escape variant failed to cause lethal encephalitis (at higher infectious doses) or induce the inflammatory responses associated with blood-brain barrier permeability in mice, suggesting an important role for the fusion loop in viral pathogenesis. Our data demonstrate that an intact West Nile virus fusion loop is critical for virulence, and that human mAb11 targeting this region is efficacious against West Nile virus infection. These experiments define the molecular determinant on the envelope protein recognized by mAb11 and demonstrate the importance of this region in causing West Nile encephalitis.
The Journal of Infectious Diseases | 2009
Shuliu Zhang; Matthew R. Vogt; Theodore Oliphant; Michael Engle; Evgeniy I. Bovshik; Michael S. Diamond; David W. C. Beasley
Previous studies have established the therapeutic efficacy of humanized E16 (hE16) monoclonal antibody against West Nile virus in animals. Here, we assess the potential for West Nile virus strains encoding mutations in the hE16 epitope to resist passive immunotherapy and for the selection of neutralization escape variants during hE16 treatment. Resistance to hE16 in vivo was less common than expected, because several mutations that affected neutralization in vitro did not significantly affect protection in mice. Moreover, the emergence of resistant variants after infection with fully sensitive virus occurred but was relatively rare, even in highly immunocompromised B and T cell-deficient RAG mice.