Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd A. Castoe is active.

Publication


Featured researches published by Todd A. Castoe.


PLOS Genetics | 2011

Repetitive Elements May Comprise Over Two-Thirds of the Human Genome

A. P. Jason de Koning; Wanjun Gu; Todd A. Castoe; Mark A. Batzer; David D. Pollock

Transposable elements (TEs) are conventionally identified in eukaryotic genomes by alignment to consensus element sequences. Using this approach, about half of the human genome has been previously identified as TEs and low-complexity repeats. We recently developed a highly sensitive alternative de novo strategy, P-clouds, that instead searches for clusters of high-abundance oligonucleotides that are related in sequence space (oligo “clouds”). We show here that P-clouds predicts >840 Mbp of additional repetitive sequences in the human genome, thus suggesting that 66%–69% of the human genome is repetitive or repeat-derived. To investigate this remarkable difference, we conducted detailed analyses of the ability of both P-clouds and a commonly used conventional approach, RepeatMasker (RM), to detect different sized fragments of the highly abundant human Alu and MIR SINEs. RM can have surprisingly low sensitivity for even moderately long fragments, in contrast to P-clouds, which has good sensitivity down to small fragment sizes (∼25 bp). Although short fragments have a high intrinsic probability of being false positives, we performed a probabilistic annotation that reflects this fact. We further developed “element-specific” P-clouds (ESPs) to identify novel Alu and MIR SINE elements, and using it we identified ∼100 Mb of previously unannotated human elements. ESP estimates of new MIR sequences are in good agreement with RM-based predictions of the amount that RM missed. These results highlight the need for combined, probabilistic genome annotation approaches and suggest that the human genome consists of substantially more repetitive sequence than previously believed.


Nature | 2011

The genome of the green anole lizard and a comparative analysis with birds and mammals

Jessica Alföldi; Federica Di Palma; Manfred Grabherr; Christina Williams; Lesheng Kong; Evan Mauceli; Pamela Russell; Craig B. Lowe; Richard E. Glor; Jacob D. Jaffe; David A. Ray; Stéphane Boissinot; Andrew M. Shedlock; Todd A. Castoe; John K. Colbourne; Matthew K. Fujita; Ricardo Moreno; Boudewijn ten Hallers; David Haussler; Andreas Heger; David I. Heiman; Daniel E. Janes; Jeremy Johnson; Pieter J. de Jong; Maxim Koriabine; Marcia Lara; Peter Novick; Chris L. Organ; Sally E. Peach; Steven Poe

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse—more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system

Freek J. Vonk; Nicholas R. Casewell; Christiaan V. Henkel; Alysha Heimberg; Hans J. Jansen; Ryan J.R. McCleary; Harald Kerkkamp; Rutger A. Vos; Isabel Guerreiro; Juan J. Calvete; Wolfgang Wüster; Anthony E. Woods; Jessica M. Logan; Robert A. Harrison; Todd A. Castoe; A. P. Jason de Koning; David D. Pollock; Mark Yandell; Diego Calderon; Camila Renjifo; Rachel B. Currier; David Salgado; Davinia Pla; Libia Sanz; Asad S. Hyder; José M. C. Ribeiro; Jan W. Arntzen; Guido van den Thillart; Marten Boetzer; Walter Pirovano

Significance Snake venoms are toxic protein cocktails used for prey capture. To investigate the evolution of these complex biological weapon systems, we sequenced the genome of a venomous snake, the king cobra, and assessed the composition of venom gland expressed genes, small RNAs, and secreted venom proteins. We show that regulatory components of the venom secretory system may have evolved from a pancreatic origin and that venom toxin genes were co-opted by distinct genomic mechanisms. After co-option, toxin genes important for prey capture have massively expanded by gene duplication and evolved under positive selection, resulting in protein neofunctionalization. This diverse and dramatic venom-related genomic response seemingly occurs in response to a coevolutionary arms race between venomous snakes and their prey. Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Evidence for an ancient adaptive episode of convergent molecular evolution

Todd A. Castoe; A. P. Jason de Koning; Hyunmin Kim; Wanjun Gu; Brice P. Noonan; Gavin J. P. Naylor; Zhi J. Jiang; Christopher L. Parkinson; David D. Pollock

Documented cases of convergent molecular evolution due to selection are fairly unusual, and examples to date have involved only a few amino acid positions. However, because convergence mimics shared ancestry and is not accommodated by current phylogenetic methods, it can strongly mislead phylogenetic inference when it does occur. Here, we present a case of extensive convergent molecular evolution between snake and agamid lizard mitochondrial genomes that overcomes an otherwise strong phylogenetic signal. Evidence from morphology, nuclear genes, and most sites in the mitochondrial genome support one phylogenetic tree, but a subset of mostly amino acid-altering substitutions (primarily at the first and second codon positions) across multiple mitochondrial genes strongly supports a radically different phylogeny. The relevant sites generally evolved slowly but converged between ancient lineages of snakes and agamids. We estimate that ≈44 of 113 predicted convergent changes distributed across all 13 mitochondrial protein-coding genes are expected to have arisen from nonneutral causes—a remarkably large number. Combined with strong previous evidence for adaptive evolution in snake mitochondrial proteins, it is likely that much of this convergent evolution was driven by adaptation. These results indicate that nonneutral convergent molecular evolution in mitochondria can occur at a scale and intensity far beyond what has been documented previously, and they highlight the vulnerability of standard phylogenetic methods to the presence of nonneutral convergent sequence evolution.


Systematic Biology | 2004

Data Partitions and Complex Models in Bayesian Analysis: The Phylogeny of Gymnophthalmid Lizards

Todd A. Castoe; Tiffany M. Doan; Christopher L. Parkinson

Phylogenetic studies incorporating multiple loci, and multiple genomes, are becoming increasingly common. Coincident with this trend in genetic sampling, model-based likelihood techniques including Bayesian phylogenetic methods continue to gain popularity. Few studies, however, have examined model fit and sensitivity to such potentially heterogeneous data partitions within combined data analyses using empirical data. Here we investigate the relative model fit and sensitivity of Bayesian phylogenetic methods when alternative site-specific partitions of among-site rate variation (with and without autocorrelated rates) are considered. Our primary goal in choosing a best-fit model was to employ the simplest model that was a good fit to the data while optimizing topology and/or Bayesian posterior probabilities. Thus, we were not interested in complex models that did not practically affect our interpretation of the topology under study. We applied these alternative models to a four-gene data set including one protein-coding nuclear gene (c-mos), one protein-coding mitochondrial gene (ND4), and two mitochondrial rRNA genes (12S and 16S) for the diverse yet poorly known lizard family Gymnophthalmidae. Our results suggest that the best-fit model partitioned among-site rate variation separately among the c-mos, ND4, and 12S + 16S gene regions. We found this model yielded identical topologies to those from analyses based on the GTR+I+G model, but significantly changed posterior probability estimates of clade support. This partitioned model also produced more precise (less variable) estimates of posterior probabilities across generations of long Bayesian runs, compared to runs employing a GTR+I+G model estimated for the combined data. We use this three-way gamma partitioning in Bayesian analyses to reconstruct a robust phylogenetic hypothesis for the relationships of genera within the lizard family Gymnophthalmidae. We then reevaluate the higher-level taxonomic arrangement of the Gymnophthalmidae. Based on our findings, we discuss the utility of nontraditional parameters for modeling among-site rate variation and the implications and future directions for complex model building and testing.


PLOS ONE | 2012

Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake.

Todd A. Castoe; Alexander W. Poole; A. P. Jason de Koning; Kenneth L. Jones; Diana F. Tomback; Sara J. Oyler-McCance; Jennifer A. Fike; Stacey L. Lance; Jeffrey W. Streicher; Eric N. Smith; David D. Pollock

Identification of microsatellites, or simple sequence repeats (SSRs), can be a time-consuming and costly investment requiring enrichment, cloning, and sequencing of candidate loci. Recently, however, high throughput sequencing (with or without prior enrichment for specific SSR loci) has been utilized to identify SSR loci. The direct “Seq-to-SSR” approach has an advantage over enrichment-based strategies in that it does not require a priori selection of particular motifs, or prior knowledge of genomic SSR content. It has been more expensive per SSR locus recovered, however, particularly for genomes with few SSR loci, such as bird genomes. The longer but relatively more expensive 454 reads have been preferred over less expensive Illumina reads. Here, we use Illumina paired-end sequence data to identify potentially amplifiable SSR loci (PALs) from a snake (the Burmese python, Python molurus bivittatus), and directly compare these results to those from 454 data. We also compare the python results to results from Illumina sequencing of two bird genomes (Gunnison Sage-grouse, Centrocercus minimus, and Clarks Nutcracker, Nucifraga columbiana), which have considerably fewer SSRs than the python. We show that direct Illumina Seq-to-SSR can identify and characterize thousands of potentially amplifiable SSR loci for as little as


Molecular Ecology Resources | 2010

Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence

Todd A. Castoe; Alexander W. Poole; Wanjun Gu; A. P. Jason de Koning; Juan M. Daza; Eric N. Smith; David D. Pollock

10 per sample – a fraction of the cost of 454 sequencing. Given that Illumina Seq-to-SSR is effective, inexpensive, and reliable even for species such as birds that have few SSR loci, it seems that there are now few situations for which prior hybridization is justifiable.


Proceedings of the National Academy of Sciences of the United States of America | 2013

The Burmese python genome reveals the molecular basis for extreme adaptation in snakes

Todd A. Castoe; A. P. Jason de Koning; Kathryn T. Hall; Daren C. Card; Drew R. Schield; Matthew K. Fujita; Robert P. Ruggiero; Jack F. Degner; Juan M. Daza; Wanjun Gu; Jacobo Reyes-Velasco; Kyle J. Shaney; Jill M. Castoe; Samuel E. Fox; Alex W. Poole; Daniel Polanco; Jason Dobry; Michael W. Vandewege; Qing Li; Ryan K. Schott; Aurélie Kapusta; Patrick Minx; Cédric Feschotte; Peter Uetz; David A. Ray; Federico G. Hoffmann; Robert Bogden; Eric N. Smith; Belinda S. W. Chang; Freek J. Vonk

Optimal integration of next‐generation sequencing into mainstream research requires re‐evaluation of how problems can be reasonably overcome and what questions can be asked. One potential application is the rapid acquisition of genomic information to identify microsatellite loci for evolutionary, population genetic and chromosome linkage mapping research on non‐model and not previously sequenced organisms. Here, we report on results using high‐throughput sequencing to obtain a large number of microsatellite loci from the venomous snake Agkistrodon contortrix, the copperhead. We used the 454 Genome Sequencer FLX next‐generation sequencing platform to sample randomly ∼27 Mbp (128 773 reads) of the copperhead genome, thus sampling about 2% of the genome of this species. We identified microsatellite loci in 11.3% of all reads obtained, with 14 612 microsatellite loci identified in total, 4564 of which had flanking sequences suitable for polymerase chain reaction primer design. The random sequencing‐based approach to identify microsatellites was rapid, cost‐effective and identified thousands of useful microsatellite loci in a previously unstudied species.


Science | 2014

Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs

Richard E. Green; Edward L. Braun; Joel Armstrong; Dent Earl; Ngan Nguyen; Glenn Hickey; Michael W. Vandewege; John St. John; Salvador Capella-Gutiérrez; Todd A. Castoe; Colin Kern; Matthew K. Fujita; Juan C. Opazo; Jerzy Jurka; Kenji K. Kojima; Juan Caballero; Robert Hubley; Arian Smit; Roy N. Platt; Christine Lavoie; Meganathan P. Ramakodi; John W. Finger; Alexander Suh; Sally R. Isberg; Lee G. Miles; Amanda Y. Chong; Weerachai Jaratlerdsiri; Jaime Gongora; C. Moran; Andrés Iriarte

Significance The molecular basis of morphological and physiological adaptations in snakes is largely unknown. Here, we study these phenotypes using the genome of the Burmese python (Python molurus bivittatus), a model for extreme phenotypic plasticity and metabolic adaptation. We discovered massive rapid changes in gene expression that coordinate major changes in organ size and function after feeding. Many significantly responsive genes are associated with metabolism, development, and mammalian diseases. A striking number of genes experienced positive selection in ancestral snakes. Such genes were related to metabolism, development, lungs, eyes, heart, kidney, and skeletal structure—all highly modified features in snakes. Snake phenotypic novelty seems to be driven by the system-wide coordination of protein adaptation, gene expression, and changes in genome structure. Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.


Genome Biology | 2012

Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes

John St. John; Edward L. Braun; Sally R. Isberg; Lee G. Miles; Amanda Yoon-Yee Chong; Jaime Gongora; Pauline Dalzell; C. Moran; Bertrand Bed'hom; Arhat Abzhanov; Shane C. Burgess; Amanda M. Cooksey; Todd A. Castoe; Nicholas G. Crawford; Llewellyn D. Densmore; Jennifer C. Drew; Scott V. Edwards; Brant C. Faircloth; Matthew K. Fujita; Matthew J. Greenwold; Federico G. Hoffmann; Jonathan M. Howard; Taisen Iguchi; Daniel E. Janes; Shahid Yar Khan; Satomi Kohno; A. P. Jason de Koning; Stacey L. Lance; Fiona M. McCarthy; John E. McCormack

INTRODUCTION Crocodilians and birds are the two extant clades of archosaurs, a group that includes the extinct dinosaurs and pterosaurs. Fossils suggest that living crocodilians (alligators, crocodiles, and gharials) have a most recent common ancestor 80 to 100 million years ago. Extant crocodilians are notable for their distinct morphology, limited intraspecific variation, and slow karyotype evolution. Despite their unique biology and phylogenetic position, little is known about genome evolution within crocodilians. Evolutionary rates of tetrapods inferred from DNA sequences anchored by ultraconserved elements. Evolutionary rates among reptiles vary, with especially low rates among extant crocodilians but high rates among squamates. We have reconstructed the genomes of the common ancestor of birds and of all archosaurs (shown in gray silhouette, although the morphology of these species is uncertain). RATIONALE Genome sequences for the American alligator, saltwater crocodile, and Indian gharial—representatives of all three extant crocodilian families—were obtained to facilitate better understanding of the unique biology of this group and provide a context for studying avian genome evolution. Sequence data from these three crocodilians and birds also allow reconstruction of the ancestral archosaurian genome. RESULTS We sequenced shotgun genomic libraries from each species and used a variety of assembly strategies to obtain draft genomes for these three crocodilians. The assembled scaffold N50 was highest for the alligator (508 kilobases). Using a panel of reptile genome sequences, we generated phylogenies that confirm the sister relationship between crocodiles and gharials, the relationship with birds as members of extant Archosauria, and the outgroup status of turtles relative to birds and crocodilians. We also estimated evolutionary rates along branches of the tetrapod phylogeny using two approaches: ultraconserved element–anchored sequences and fourfold degenerate sites within stringently filtered orthologous gene alignments. Both analyses indicate that the rates of base substitution along the crocodilian and turtle lineages are extremely low. Supporting observations were made for transposable element content and for gene family evolution. Analysis of whole-genome alignments across a panel of reptiles and mammals showed that the rate of accumulation of micro-insertions and microdeletions is proportionally lower in crocodilians, consistent with a single underlying cause of a reduced rate of evolutionary change rather than intrinsic differences in base repair machinery. We hypothesize that this single cause may be a consistently longer generation time over the evolutionary history of Crocodylia. Low heterozygosity was observed in each genome, consistent with previous analyses, including the Chinese alligator. Pairwise sequential Markov chain analysis of regional heterozygosity indicates that during glacial cycles of the Pleistocene, each species suffered reductions in effective population size. The reduction was especially strong for the American alligator, whose current range extends farthest into regions of temperate climates. CONCLUSION We used crocodilian, avian, and outgroup genomes to reconstruct 584 megabases of the archosaurian common ancestor genome and the genomes of key ancestral nodes. The estimated accuracy of the archosaurian genome reconstruction is 91% and is higher for conserved regions such as genes. The reconstructed genome can be improved by adding more crocodilian and avian genome assemblies and may provide a unique window to the genomes of extinct organisms such as dinosaurs and pterosaurs. To provide context for the diversification of archosaurs—the group that includes crocodilians, dinosaurs, and birds—we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.

Collaboration


Dive into the Todd A. Castoe's collaboration.

Top Co-Authors

Avatar

David D. Pollock

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Daren C. Card

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Drew R. Schield

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. P. Jason de Koning

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Eric N. Smith

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Wanjun Gu

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Richard H. Adams

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Audra L. Andrew

University of Texas at Arlington

View shared research outputs
Top Co-Authors

Avatar

Matthew K. Fujita

University of Texas at Arlington

View shared research outputs
Researchain Logo
Decentralizing Knowledge