Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Todd G. Smith is active.

Publication


Featured researches published by Todd G. Smith.


Expert Review of Vaccines | 2011

From brain passage to cell adaptation: the road of human rabies vaccine development

Xianfu Wu; Todd G. Smith; Charles E. Rupprecht

A major challenge for global rabies prevention and control is the lack of sufficient and affordable high quality vaccines. Such candidates should be pure, potent, safe, effective and economical to produce, with broad cross-reactivity against viral variants of public health and veterinary importance. The history of licensed human vaccines reviewed herein demonstrates clearly how the field has evolved to the current state of more passive development and postexposure management. Modern cell culture techniques provide adequate viral substrates for production of representative verified virus seeds. In contrast to outdated nervous tissue-based rabies vaccines, once a suitable substrate is identified, production of high titer virus results in a major qualitative and quantitative difference. Given the current scenario of only inactivated vaccines for humans, highly cell-adapted and stable, attenuated rabies viruses are ideal candidates for consideration to meet the need for seed viruses in the future.


Advances in Virus Research | 2011

Design of future rabies biologics and antiviral drugs.

Todd G. Smith; Xianfu Wu; Richard Franka; Charles E. Rupprecht

In recent years, no major paradigm shifts have occurred in the utilization of new products for the prevention and control of rabies. Development of new cost-effective rabies biologics and antiviral drugs is critical in continuing to prevent and reduce disease. Current rabies vaccines are highly effective but have developed largely based on technical improvements in the vaccine industry. In the future, alternative approaches for improved vaccines, including novel avirulent rabies virus (RABV) vectors, should be pursued. Any rabies vaccine that is effective without the need for rabies immune globulin (RIG) will contribute fundamentally to disease prevention by reducing the cost and complexity of postexposure prophylaxis (PEP). The lack of high quality, affordable RIG is a continuing problem. Virus-specific monoclonal antibodies (mAbs) will soon fulfill the PEP requirement for passive immunity, currently met with RIG. Several relevant strategies for mAb production, including use of transgenic mice, humanization of mouse mAbs, and generation of human immune libraries, are underway. As a result of successful PEP and pre-exposure prophylaxis in developed countries, until recently, no significant focused efforts have been devoted to RABV-specific antiviral agents. To date, combination therapy including broad spectrum antiviral agents has been successful in only one case, and reports of antiviral activity are often conflicting. Current antiviral strategies target either the nucleoprotein or phosphoprotein, but drugs targeting the viral polymerase should be considered. Considering the lag from creation of new concepts to experimental development and clinical trials, many years will likely elapse between todays ideas and tomorrows practices.


Morbidity and Mortality Weekly Report | 2016

Human Rabies — Missouri, 2014

Pratt Pd; Henschel K; Turabelidze G; Grim A; James A. Ellison; Lillian A. Orciari; Pamela A. Yager; Richard Franka; Wu X; Ma X; Ashutosh Wadhwa; Todd G. Smith; Brett W. Petersen; Shiferaw M

On September 18, 2014, the Missouri Department of Health and Senior Services (MDHSS) was notified of a suspected rabies case in a Missouri resident. The patient, a man aged 52 years, lived in a rural, deeply wooded area, and bat sightings in and around his home were anecdotally reported. Exposure to bats poses a risk for rabies. After two emergency department visits for severe neck pain, paresthesia in the left arm, upper body tremors, and anxiety, he was hospitalized on September 13 for encephalitis of unknown etiology. On September 24, he received a diagnosis of rabies and on September 26, he died. Genetic sequencing tests confirmed infection with a rabies virus variant associated with tricolored bats. Health care providers need to maintain a high index of clinical suspicion for rabies in patients who have unexplained, rapidly progressive encephalitis, and adhere to recommended infection control practices when examining and treating patients with suspected infectious diseases.


Vaccine | 2013

An electrochemiluminescence assay for analysis of rabies virus glycoprotein content in rabies vaccines

Todd G. Smith; James A. Ellison; Xiaoyue Ma; Natalia Kuzmina; William C. Carson; Charles E. Rupprecht

Vaccine potency testing is necessary to evaluate the immunogenicity of inactivated rabies virus (RABV) vaccine preparations before human or veterinary application. Currently, the NIH test is recommended by the WHO expert committee to evaluate RABV vaccine potency. However, numerous disadvantages are inherent concerning cost, number of animals and biosafety requirements. As such, several in vitro methods have been proposed for the evaluation of vaccines based on RABV glycoprotein (G) quality and quantity, which is expected to correlate with vaccine potency. In this study an antigen-capture electrochemiluminescent (ECL) assay was developed utilizing anti-RABV G monoclonal antibodies (MAb) to quantify RABV G. One MAb 2-21-14 was specific for a conformational epitope so that only immunogenic, natively folded G was captured in the assay. MAb 2-21-14 or a second MAb (62-80-6) that binds a linear epitope was used for detection of RABV G. Vaccine efficacy was also assessed in vivo using pre-exposure vaccination of mice. Purified native RABV G induced a RABV neutralizing antibody (rVNA) response with a geometric mean titer of 4.2IU/ml and protected 100% of immunized mice against RABV challenge, while an experimental vaccine with a lower quality and quantity of G induced a rVNA titer<0.05IU/ml and protected <50% of immunized mice. These preliminary results support the hypothesis that in vivo immunogenicity may be predicted from the in vitro measurement of RABV G using an ECL assay. Based upon these results, the ECL assay may have utility in replacement of the NIH test.


Vaccine | 2015

Rabies vaccine preserved by vaporization is thermostable and immunogenic.

Todd G. Smith; Marina Siirin; Xianfu Wu; Cathleen A. Hanlon; Victor L. Bronshtein

A rabies vaccine that is thermostable over a range of ambient environmental temperatures would be highly advantageous, especially for tropical regions with challenging cold-chain storage where canine rabies remains enzootic resulting in preventable human mortality. Live attenuated rabies virus (RABV) strain ERAG333 (R333E) was preserved by vaporization (PBV) in a dry, stable foam. RABV stabilized using this process remains viable for at least 23 months at 22°C, 15 months at 37°C, and 3h at 80°C. An antigen capture assay revealed RABV PBV inactivated by irradiation contained similar levels of antigen as a commercial vaccine. Viability and antigen capture testing confirmed that the PBV process stabilized RABV with no significant loss in titer or antigen content. Live attenuated and inactivated RABV PBV both effectively induced RABV neutralizing antibodies and protected mice from peripheral RABV challenge. These results demonstrate that PBV is an efficient method for RABV stabilization.


Vaccine | 2017

Evaluation of immune responses in dogs to oral rabies vaccine under field conditions

Todd G. Smith; Max Millien; Ad Vos; Franso Acky Fracciterne; Kelly Crowdis; Cornelius Chirodea; Alexandra Medley; Richard B. Chipman; Yunlong Qin; Jesse D. Blanton; Ryan M. Wallace

During the 20th century parenteral vaccination of dogs at central-point locations was the foundation of successful canine rabies elimination programs in numerous countries. However, countries that remain enzootic for canine rabies have lower infrastructural development compared to countries that have achieved elimination, which may make traditional vaccination methods less successful. Alternative vaccination methods for dogs must be considered, such as oral rabies vaccine (ORV). In 2016, a traditional mass dog vaccination campaign in Haiti was supplemented with ORV to improve vaccination coverage and to evaluate the use of ORV in dogs. Blisters containing live-attenuated, vaccine strain SPBNGAS-GAS were placed in intestine bait and distributed to dogs by hand. Serum was collected from 107 dogs, aged 3-12 months with no reported prior rabies vaccination, pre-vaccination and from 78/107 dogs (72.9%) 17 days post-vaccination. The rapid florescent focus inhibition test (RFFIT) was used to detect neutralizing antibodies and an ELISA to detect rabies binding antibodies. Post-vaccination, 38/41 (92.7%) dogs that received parenteral vaccine had detectable antibody (RFFIT >0.05 IU/mL), compared to 16/27 (59.3%, p < 0.01) dogs that received ORV or 21/27 (77.8%) as measured by ELISA (>40% blocking, p < 0.05). The fate of 291 oral vaccines was recorded; 283 dogs (97.2%) consumed the bait; 272 dogs (93.4%) were observed to puncture the blister, and only 14 blisters (4.8%) could not be retrieved by vaccinators and were potentially left in the environment. Pre-vaccination antibodies (RFFIT >0.05 IU/mL) were detected in 10/107 reportedly vaccine-naïve dogs (9.3%). Parenteral vaccination remains the most reliable method for ensuring adequate immune response in dogs, however ORV represents a viable strategy to supplement existing parental vaccination campaigns in hard-to-reach dog populations. The hand-out model reduces the risk of unintended contact with ORV through minimizing vaccine blisters left in the community.


Tropical Medicine and Infectious Disease | 2017

In Vivo Efficacy of a Cocktail of Human Monoclonal Antibodies (CL184) Against Diverse North American Bat Rabies Virus Variants

Richard Franka; William C. Carson; James A. Ellison; Steven T. Taylor; Todd G. Smith; Natalia Kuzmina; Ivan V. Kuzmin; Wilfred E. Marissen; Charles E. Rupprecht

Following rabies virus (RABV) exposure, a combination of thorough wound washing, multiple-dose vaccine administration and the local infiltration of rabies immune globulin (RIG) are essential components of modern post-exposure prophylaxis (PEP). Although modern cell-culture-based rabies vaccines are increasingly used in many countries, RIG is much less available. The prohibitive cost of polyclonal serum RIG products has prompted a search for alternatives and design of anti-RABV monoclonal antibodies (MAbs) that can be manufactured on a large scale with a consistent potency and lower production costs. Robust in vitro neutralization activity has been demonstrated for the CL184 MAb cocktail, a 1:1 protein mixture of two human anti-RABV MAbs (CR57/CR4098), against a large panel of RABV isolates. In this study, we used a hamster model to evaluate the efficacy of experimental PEP against a lethal challenge. Various doses of CL184 and commercial rabies vaccine were assessed for the ability to protect against lethal infection with representatives of four distinct bat RABV lineages of public health relevance: silver-haired bat (Ln RABV); western canyon bat (Ph RABV); big brown bat (Ef-w1 RABV) and Mexican free-tailed bat RABV (Tb RABV). 42–100% of animals survived bat RABV infection when CL184 (in combination with the vaccine) was administered. A dose-response relationship was observed with decreasing doses of CL184 resulting in increasing mortality. Importantly, CL184 was highly effective in neutralizing and clearing Ph RABV in vivo, even though CR4098 does not neutralize this virus in vitro. By comparison, 19–95% survivorship was observed if human RIG (20 IU/kg) and vaccine were used following challenge with different bat viruses. Based on our results, CL184 represents an efficacious alternative for RIG. Both large-scale and lower cost production could ensure better availability and affordability of this critical life-saving biologic in rabies enzootic countries and as such, significantly contribute to the reduction of human rabies deaths globally.


Virus Research | 2018

Revisiting rabies virus neutralizing antibodies through infecting BALB/c mice with live rabies virus

Yunlong Qin; Todd G. Smith; Felix R. Jackson; Nadia F. Gallardo-Romero; Clint N. Morgan; Victoria A. Olson; Christina L. Hutson; Xianfu Wu

This study investigates the production of rabies virus (RABV) neutralizing antibody after virus infection through a mouse model. The BALB/c mice from different age groups (three, five, seven week old) were intramuscularly inoculated with live rabies virus (TX coyote 323R). Without pre-exposure or post-exposure prophylaxis (PEP), we found there is a decreased fatality with increased age of animals, the mortalities are 60%, 50%, and 30%, respectively. Interestingly, through assay of rapid fluorescent focus inhibition test (RFFIT), direct fluorescent antibody (DFA) and quantitative Polymerase Chain Reaction (qPCR), the results showed that all the animals that succumbed to rabies challenge, except one, developed circulating neutralizing antibodies, and all the healthy animals, except two, did not generate virus neutralizing antibodies (VNA). Our animal study suggests that the induction of VNA was an indicator of infection progression in the central nervous system (CNS) and speculate that RABV neutralizing antibodies did not cross the blood-brain barrier of the CNS for those diseased animals. We hypothesize that early release of viral antigens from damaged nerve tissue might potentially be a benefit for survivors, and we also discuss several other aspects of the interaction of RABV and its neutralizing antibodies.


American Journal of Veterinary Research | 2017

Assessment of the immunogenicity of rabies vaccine preserved by vaporization and delivered to the duodenal mucosa of gray foxes (Urocyon cinereoargenteus)

Todd G. Smith; Xianfu Wu; James A. Ellison; Ashutosh Wadhwa; Richard Franka; Gregory L. Langham; Brianna L. Skinner; Cathleen A. Hanlon; Victor L. Bronshtein

OBJECTIVE To assess the immunogenicity of thermostable live-attenuated rabies virus (RABV) preserved by vaporization (PBV) and delivered to the duodenal mucosa of a wildlife species targeted for an oral vaccination program. ANIMALS 8 gray foxes (Urocyon cinereoargenteus). PROCEDURES Endoscopy was used to place RABV PBV (n = 3 foxes), alginate-encapsulated RABV PBV (3 foxes), or nonpreserved RABV (2 foxes) vaccine into the duodenum of foxes. Blood samples were collected weekly to monitor the immune response. Saliva samples were collected weekly and tested for virus shedding by use of a conventional reverse-transcriptase PCR assay. Foxes were euthanized 28 days after vaccine administration, and relevant tissues were collected and tested for presence of RABV. RESULTS 2 of 3 foxes that received RABV PBV and 1 of 2 foxes that received nonpreserved RABV seroconverted by day 28. None of the 3 foxes receiving alginate-encapsulated RABV PBV seroconverted. No RABV RNA was detected in saliva at any of the time points, and RABV antigen or RNA was not detected in any of the tissues obtained on day 28. None of the foxes displayed any clinical signs of rabies. CONCLUSIONS AND CLINICAL RELEVANCE Results for this study indicated that a live-attenuated RABV vaccine delivered to the duodenal mucosa can induce an immune response in gray foxes. A safe, potent, thermostable RABV vaccine that could be delivered orally to wildlife or domestic animals would enhance current rabies control and prevention efforts.


Morbidity and Mortality Weekly Report | 2006

Chikungunya fever diagnosed among international travelers - United States, 2005-2006

E. Warner; J. Garcia-Diaz; G. Balsamo; S. Shranatan; A. Bergmann; L. Blauwet; M. Sohail; L. Baddour; C. Reed; H. Baggett; G. Campbell; Todd G. Smith; Ann M. Powers; N. Hayes; A. Noga; Jennifer A. Lehman

Collaboration


Dive into the Todd G. Smith's collaboration.

Top Co-Authors

Avatar

Richard Franka

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Xianfu Wu

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James A. Ellison

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

William C. Carson

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Wadhwa

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Brett W. Petersen

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lillian A. Orciari

Centers for Disease Control and Prevention

View shared research outputs
Top Co-Authors

Avatar

Michael Niezgoda

Centers for Disease Control and Prevention

View shared research outputs
Researchain Logo
Decentralizing Knowledge