Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uwe Richter is active.

Publication


Featured researches published by Uwe Richter.


The Plant Cell | 2009

Phage-Type RNA Polymerase RPOTmp Performs Gene-Specific Transcription in Mitochondria of Arabidopsis thaliana

Kristina Kühn; Uwe Richter; Etienne H. Meyer; Etienne Delannoy; Andéol Falcon de Longevialle; Nicholas O'Toole; Thomas Börner; A. Harvey Millar; Ian Small; James Whelan

Transcription of mitochondrial genes in animals, fungi, and plants relies on the activity of T3/T7 phage-type RNA polymerases. Two such enzymes, RPOTm and RPOTmp, are present in the mitochondria of eudicotyledonous plants; RPOTmp is additionally found in plastids. We have characterized the transcriptional role of the dual-targeted RNA polymerase in mitochondria of Arabidopsis thaliana. Examination of mitochondrial transcripts in rpoTmp mutants revealed major differences in transcript abundances between wild-type and rpoTmp plants. Decreased levels of specific transcripts were correlated with reduced abundances of the respiratory chain complexes I and IV. Altered transcript levels in rpoTmp were found to result from gene-specific transcriptional changes, establishing that RPOTmp functions in distinct transcriptional processes within mitochondria. Decreased transcription of specific genes in rpoTmp was not associated with changes in promoter utilization; therefore, RPOTmp function is not promoter specific but gene specific. This implies that additional gene-specific elements direct the transcription of a subset of mitochondrial genes by RPOTmp.


Gene | 2002

Two RpoT genes of Physcomitrella patens encode phage-type RNA polymerases with dual targeting to mitochondria and plastids.

Uwe Richter; Justine Kiessling; Boris Hedtke; Eva L. Decker; Ralf Reski; Thomas Börner; Andreas Weihe

Angiosperms possess a small family of phage-type RNA polymerase genes that arose by gene duplication from an ancestral gene encoding the mitochondrial RNA polymerase. We have isolated and sequenced the genes and cDNAs encoding two phage-type RNA polymerases, PpRpoT1 and PpRpoT2, from the moss Physcomitrella patens. PpRpoT1 comprises 19 exons and 18 introns, PpRpoT2 contains two additional introns. The N-terminal transit peptides of both polymerases are shown to confer dual-targeting of green fluorescent protein fusions to mitochondria and plastids. In vitro translation of the cDNAs revealed initiation of translation at two in-frame AUG start codons. Translation from the first methionine gives rise to a plastid-targeted polymerase, whereas initiation from the second methionine results in exclusively mitochondrial-targeted protein. Thus, dual-targeting of Physcomitrella RpoT is caused by and might be regulated by multiple translational starts. In phylogenetic analyses, the Physcomitrella RpoT polymerases form a sister group to all other phage-type polymerases of land plants. The two genes result from a gene duplication event that occurred independently from the one which led to the organellar polymerases with mitochondrial or plastid targeting properties in angiosperms. Yet, according to their conserved exon-intron structures they are representatives of the molecular evolutionary line leading to the RpoT genes of higher land plants.


Journal of Medical Genetics | 2013

Whole-exome sequencing identifies a mutation in the mitochondrial ribosome protein MRPL44 to underlie mitochondrial infantile cardiomyopathy

Christopher J. Carroll; Pirjo Isohanni; Rosanna Pöyhönen; Liliya Euro; Uwe Richter; Virginia Brilhante; Alexandra Götz; Taina Lahtinen; Anders Paetau; Helena Pihko; Brendan J. Battersby; Henna Tyynismaa; Anu Suomalainen

Background The genetic complexity of infantile cardiomyopathies is remarkable, and the importance of mitochondrial translation defects as a causative factor is only starting to be recognised. We investigated the genetic basis for infantile onset recessive hypertrophic cardiomyopathy in two siblings. Methods and results Analysis of respiratory chain enzymes revealed a combined deficiency of complexes I and IV in the heart and skeletal muscle. Exome sequencing uncovered a homozygous mutation (L156R) in MRPL44 of both siblings. MRPL44 encodes a protein in the large subunit of the mitochondrial ribosome and is suggested to locate in close proximity to the tunnel exit of the yeast mitochondrial ribosome. We found severely reduced MRPL44 levels in the patients heart, skeletal muscle and fibroblasts suggesting that the missense mutation affected the protein stability. In patient fibroblasts, decreased MRPL44 affected assembly of the large ribosomal subunit and stability of 16S rRNA leading to complex IV deficiency. Despite this assembly defect, de novo mitochondrial translation was only mildly affected in fibroblasts suggesting that MRPL44 may have a function in the assembly/stability of nascent mitochondrial polypeptides exiting the ribosome. Retroviral expression of wild-type MRPL44 in patient fibroblasts rescued the large ribosome assembly defect and COX deficiency. Conclusions These findings indicate that mitochondrial ribosomal subunit defects can generate tissue-specific manifestations, such as cardiomyopathy.


Current Biology | 2013

A Mitochondrial Ribosomal and RNA Decay Pathway Blocks Cell Proliferation

Uwe Richter; Taina Lahtinen; Paula Marttinen; Maarit Myöhänen; Dario Greco; Giuseppe Cannino; Howard T. Jacobs; Niina Lietzén; Tuula A. Nyman; Brendan J. Battersby

Proliferating cells require coordinated gene expression between the nucleus and mitochondria in order to divide, ensuring sufficient organelle number in daughter cells [1]. However, the machinery and mechanisms whereby proliferating cells monitor mitochondria and coordinate organelle biosynthesis remain poorly understood. Antibiotics inhibiting mitochondrial translation have emerged as therapeutics for human cancers because they block cell proliferation [2, 3]. These proliferative defects were attributable to modest decreases in mitochondrial respiration [3, 4], even though tumors are mainly glycolytic [5] and mitochondrial respiratory chain function appears to play a minor role in cell proliferation in vivo [6]. Here we challenge this interpretation by demonstrating that one class of antiproliferative antibiotic induces stalled mitochondrial ribosomes, which triggers a mitochondrial ribosome and RNA decay pathway. Rescue of the stalled mitochondrial ribosomes initiates a retrograde signaling response to block cell proliferation and occurs prior to any loss of mitochondrial respiration. The loss of respiratory chain function is simply a downstream effect of impaired mitochondrial translation and not the antiproliferative signal. This mitochondrial ribosome quality-control pathway is actively monitored in cells and constitutes an important organelle checkpoint for cell division.


Journal of Cell Biology | 2015

Quality control of mitochondrial protein synthesis is required for membrane integrity and cell fitness

Uwe Richter; Taina Lahtinen; Paula Marttinen; Fumi Suomi; Brendan J. Battersby

Impaired turnover of newly synthesized mitochondrial proteins of the oxidative phosphorylation complexes leads to protein over-accumulation in the inner mitochondrial membrane, thereby generating a stress that dissipates the mitochondrial membrane potential and therefore compromises organelle and cellular fitness.


Plant Journal | 2010

A mitochondrial rRNA dimethyladenosine methyltransferase in Arabidopsis.

Uwe Richter; Kristina Kühn; Sachiko Okada; Axel Brennicke; Andreas Weihe; Thomas Börner

S-adenosyl-l-methionine-dependent rRNA dimethylases mediate the methylation of two conserved adenosines near the 3′ end of the rRNA in the small ribosomal subunits of bacteria, archaea and eukaryotes. Proteins related to this family of dimethylases play an essential role as transcription factors (mtTFBs) in fungal and animal mitochondria. Human mitochondrial rRNA is methylated and human mitochondria contain two related mtTFBs, one proposed to act as rRNA dimethylase, the other as transcription factor. The nuclear genome of Arabidopsis thaliana encodes three dimethylase/mtTFB-like proteins, one of which, Dim1B, is shown here to be imported into mitochondria. Transcription initiation by mitochondrial RNA polymerases appears not to be stimulated by Dim1B in vitro. In line with this finding, phylogenetic analyses revealed Dim1B to be more closely related to a group of eukaryotic non-mitochondrial rRNA dimethylases (Dim1s) than to fungal and animal mtTFBs. We found that Dim1B was capable of substituting the E. coli rRNA dimethylase activity of KsgA. Moreover, we observed methylation of the conserved adenines in the 18S rRNA of Arabidopsis mitochondria; this modification was not detectable in a mutant lacking Dim1B. These data provide evidence: (i) for rRNA methylation in Arabidopsis mitochondria; and (ii) that Dim1B is the enzyme catalyzing this process.


Journal of Cell Science | 2013

Why translation counts for mitochondria - retrograde signalling links mitochondrial protein synthesis to mitochondrial biogenesis and cell proliferation

Brendan J. Battersby; Uwe Richter

Summary Organelle biosynthesis is a key requirement for cell growth and division. The regulation of mitochondrial biosynthesis exhibits additional layers of complexity compared with that of other organelles because they contain their own genome and dedicated ribosomes. Maintaining these components requires gene expression to be coordinated between the nucleo-cytoplasmic compartment and mitochondria in order to monitor organelle homeostasis and to integrate the responses to the physiological and developmental demands of the cell. Surprisingly, the parameters that are used to monitor or count mitochondrial abundance are not known, nor are the signalling pathways. Inhibiting the translation on mito-ribosomes genetically or with antibiotics can impair cell proliferation and has been attributed to defects in aerobic energy metabolism, even though proliferating cells rely primarily on glycolysis to fuel their metabolic demands. However, a recent study indicates that mitochondrial translational stress and the rescue mechanisms that relieve this stress cause the defect in cell proliferation and occur before any impairment of oxidative phosphorylation. Therefore, the process of mitochondrial translation in itself appears to be an important checkpoint for the monitoring of mitochondrial homeostasis and might have a role in establishing mitochondrial abundance within a cell. This hypothesis article will explore the evidence supporting a role for mito-ribosomes and translation in a mitochondria-counting mechanism.


BMC Evolutionary Biology | 2010

Evolution of plant phage-type RNA polymerases: the genome of the basal angiosperm Nuphar advena encodes two mitochondrial and one plastid phage-type RNA polymerases

Chang Yin; Uwe Richter; Thomas Börner; Andreas Weihe

BackgroundIn mono- and eudicotyledonous plants, a small nuclear gene family (RpoT, RNA polymerase of the T3/T7 type) encodes mitochondrial as well as chloroplast RNA polymerases homologous to the T-odd bacteriophage enzymes. RpoT genes from angiosperms are well characterized, whereas data from deeper branching plant species are limited to the moss Physcomitrella and the spikemoss Selaginella. To further elucidate the molecular evolution of the RpoT polymerases in the plant kingdom and to get more insight into the potential importance of having more than one phage-type RNA polymerase (RNAP) available, we searched for the respective genes in the basal angiosperm Nuphar advena.ResultsBy screening a set of BAC library filters, three RpoT genes were identified. Both genomic gene sequences and full-length cDNAs were determined. The NaRpoT mRNAs specify putative polypeptides of 996, 990 and 985 amino acids, respectively. All three genes comprise 19 exons and 18 introns, conserved in their positions with those known from RpoT genes of other land plants. The encoded proteins show a high degree of conservation at the amino acid sequence level, including all functional crucial regions and residues known from the phage T7 RNAP. The N-terminal transit peptides of two of the encoded polymerases, NaRpoTm1 and NaRpoTm2, conferred targeting of green fluorescent protein (GFP) exclusively to mitochondria, whereas the third polymerase, NaRpoTp, was targeted to chloroplasts. Remarkably, translation of NaRpoTp mRNA has to be initiated at a CUG codon to generate a functional plastid transit peptide. Thus, besides AGAMOUS in Arabidopsis and the Nicotiana RpoTp gene, N. advena RpoTp provides another example for a plant mRNA that is exclusively translated from a non-AUG codon. In contrast to the RpoT of the lycophyte Selaginella and those of the moss Physcomitrella, which are according to phylogenetic analyses in sister positions to all other phage-type polymerases of angiosperms, the Nuphar RpoTs clustered with the well separated clades of mitochondrial (NaRpoTm1 and NaRpoTm2) and plastid (NaRpoTp) polymerases.ConclusionsNuphar advena encodes two mitochondrial and one plastid phage-type RNAP. Identification of a plastid-localized phage-type RNAP in this basal angiosperm, orthologous to all other RpoTp enzymes of flowering plants, suggests that the duplication event giving rise to a nuclear gene-encoded plastid RNA polymerase, not present in lycopods, took place after the split of lycopods from all other tracheophytes. A dual-targeted mitochondrial and plastididal RNA polymerase (RpoTmp), as present in eudicots but not monocots, was not detected in Nuphar suggesting that its occurrence is an evolutionary novelty of eudicotyledonous plants like Arabidopsis.


Archive | 2010

Evolution of plant phage-type RNA polymerases

Chang Yin; Uwe Richter; Thomas Börner; Andreas Weihe

BackgroundIn mono- and eudicotyledonous plants, a small nuclear gene family (RpoT, RNA polymerase of the T3/T7 type) encodes mitochondrial as well as chloroplast RNA polymerases homologous to the T-odd bacteriophage enzymes. RpoT genes from angiosperms are well characterized, whereas data from deeper branching plant species are limited to the moss Physcomitrella and the spikemoss Selaginella. To further elucidate the molecular evolution of the RpoT polymerases in the plant kingdom and to get more insight into the potential importance of having more than one phage-type RNA polymerase (RNAP) available, we searched for the respective genes in the basal angiosperm Nuphar advena.ResultsBy screening a set of BAC library filters, three RpoT genes were identified. Both genomic gene sequences and full-length cDNAs were determined. The NaRpoT mRNAs specify putative polypeptides of 996, 990 and 985 amino acids, respectively. All three genes comprise 19 exons and 18 introns, conserved in their positions with those known from RpoT genes of other land plants. The encoded proteins show a high degree of conservation at the amino acid sequence level, including all functional crucial regions and residues known from the phage T7 RNAP. The N-terminal transit peptides of two of the encoded polymerases, NaRpoTm1 and NaRpoTm2, conferred targeting of green fluorescent protein (GFP) exclusively to mitochondria, whereas the third polymerase, NaRpoTp, was targeted to chloroplasts. Remarkably, translation of NaRpoTp mRNA has to be initiated at a CUG codon to generate a functional plastid transit peptide. Thus, besides AGAMOUS in Arabidopsis and the Nicotiana RpoTp gene, N. advena RpoTp provides another example for a plant mRNA that is exclusively translated from a non-AUG codon. In contrast to the RpoT of the lycophyte Selaginella and those of the moss Physcomitrella, which are according to phylogenetic analyses in sister positions to all other phage-type polymerases of angiosperms, the Nuphar RpoTs clustered with the well separated clades of mitochondrial (NaRpoTm1 and NaRpoTm2) and plastid (NaRpoTp) polymerases.ConclusionsNuphar advena encodes two mitochondrial and one plastid phage-type RNAP. Identification of a plastid-localized phage-type RNAP in this basal angiosperm, orthologous to all other RpoTp enzymes of flowering plants, suggests that the duplication event giving rise to a nuclear gene-encoded plastid RNA polymerase, not present in lycopods, took place after the split of lycopods from all other tracheophytes. A dual-targeted mitochondrial and plastididal RNA polymerase (RpoTmp), as present in eudicots but not monocots, was not detected in Nuphar suggesting that its occurrence is an evolutionary novelty of eudicotyledonous plants like Arabidopsis.


Human Molecular Genetics | 2017

Defective mitochondrial RNA processing due to PNPT1 variants causes Leigh syndrome

Sanna Matilainen; Christopher J. Carroll; Uwe Richter; Liliya Euro; Max Pohjanpelto; Anders Paetau; Pirjo Isohanni; Anu Suomalainen

Leigh syndrome is a severe infantile encephalopathy with an exceptionally variable genetic background. We studied the exome of a child manifesting with Leigh syndrome at one month of age and progressing to death by the age of 2.4 years, and identified novel compound heterozygous variants in PNPT1, encoding the polynucleotide phosphorylase (PNPase). Expression of the wild type PNPT1 in the subjects myoblasts functionally complemented the defects, and the pathogenicity was further supported by structural predictions and protein and RNA analyses. PNPase is a key enzyme in mitochondrial RNA metabolism, with suggested roles in mitochondrial RNA import and degradation. The variants were predicted to locate in the PNPase active site and disturb the RNA processing activity of the enzyme. The PNPase trimer formation was not affected, but specific RNA processing intermediates derived from mitochondrial transcripts of the ND6 subunit of Complex I, as well as small mRNA fragments, accumulated in the subjects myoblasts. Mitochondrial RNA processing mediated by the degradosome consisting of hSUV3 and PNPase is poorly characterized, and controversy on the role and location of PNPase within human mitochondria exists. Our evidence indicates that PNPase activity is essential for the correct maturation of the ND6 transcripts, and likely for the efficient removal of degradation intermediates. Loss of its activity will result in combined respiratory chain deficiency, and a classic respiratory chain-deficiency-associated disease, Leigh syndrome, indicating an essential role for the enzyme for normal function of the mitochondrial respiratory chain.

Collaboration


Dive into the Uwe Richter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Börner

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Andreas Weihe

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge