Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weon-kyu Koh is active.

Publication


Featured researches published by Weon-kyu Koh.


Journal of the American Chemical Society | 2011

Thiocyanate-Capped Nanocrystal Colloids: Vibrational Reporter of Surface Chemistry and Solution-Based Route to Enhanced Coupling in Nanocrystal Solids

Aaron T. Fafarman; Weon-kyu Koh; Benjamin T. Diroll; David K. Kim; Dong-Kyun Ko; Soong Ju Oh; Xingchen Ye; Vicky V. T. Doan-Nguyen; Michael R. Crump; Danielle Reifsnyder; Christopher B. Murray; Cherie R. Kagan

Ammonium thiocyanate (NH(4)SCN) is introduced to exchange the long, insulating ligands used in colloidal nanocrystal (NC) synthesis. The short, air-stable, environmentally benign thiocyanate ligand electrostatically stabilizes a variety of semiconductor and metallic NCs in polar solvents, allowing solution-based deposition of NCs into thin-film NC solids. NH(4)SCN is also effective in replacing ligands on NCs after their assembly into the solid state. The spectroscopic properties of this ligand provide unprecedented insight into the chemical and electronic nature of the surface of the NCs. Spectra indicate that the thiocyanate binds to metal sites on the NC surface and is sensitive to atom type and NC surface charge. The short, thiocyanate ligand gives rise to significantly enhanced electronic coupling between NCs as evidenced by large bathochromic shifts in the absorption spectra of CdSe and CdTe NC thin films and by conductivities as high as (2 ± 0.7) × 10(3) Ω(-1) cm(-1) for Au NC thin films deposited from solution. NH(4)SCN treatment of PbTe NC films increases the conductivity by 10(13), allowing the first Hall measurements of nonsintered NC solids, with Hall effect mobilities of 2.8 ± 0.7 cm(2)/(V·s). Thiocyanate-capped CdSe NC thin films form photodetectors exhibiting sensitive photoconductivity of 10(-5) Ω(-1) cm(-1) under 30 mW/cm(2) of 488 nm illumination with I(photo)/I(dark) > 10(3) and form n-channel thin-film transistors with electron mobilities of 1.5 ± 0.7 cm(2)/(V·s), a current modulation of >10(6), and a subthreshold swing of 0.73 V/decade.


Journal of the American Chemical Society | 2010

Synthesis of Monodisperse PbSe Nanorods: A Case for Oriented Attachment

Weon-kyu Koh; Adam Bartnik; Frank W. Wise; Christopher B. Murray

Monodisperse, high-quality, single-crystal PbSe nanorods were synthesized in a catalyst-free, one-pot reaction using a new phosphine selenide precursor. PbSe nanorods were assembled to provide liquid-crystalline alignment or vertical alignment under controlled evaporation conditions. The growth of nanorods was monitored by TEM and absorption spectroscopy, indicating that oriented attachment could be involved to provide anisotropic PbSe nanostructures. In-plane XRD showed an enhanced (200) peak for PbSe nanorods, indicating the preferred alignment of nanorods on the substrates and their growth along the <100> direction. Absorption and emission spectra, along with lifetime measurements, show the differences between nanoscale PbSe spheres and rods.


Nano Letters | 2011

Thiocyanate-capped PbS nanocubes: ambipolar transport enables quantum dot based circuits on a flexible substrate.

Weon-kyu Koh; Sangameshwar Rao Saudari; Aaron T. Fafarman; Cherie R. Kagan; Christopher B. Murray

We report the use of thiocyanate as a ligand for lead sulfide (PbS) nanocubes for high-performance, thin-film electronics. PbS nanocubes, self-assembled into thin films and capped with the thiocyanate, exhibit ambipolar characteristics in field-effect transistors. The nearly balanced, high mobilities for electrons and holes enable the fabrication of CMOS-like inverters with promising gains of ∼22 from a single semiconductor material. The mild chemical treatment and low-temperature processing conditions are compatible with plastic substrates, allowing the realization of flexible, nonsintered quantum dot circuits.


Physical Review B | 2010

Electronic states and optical properties of PbSe nanorods and nanowires

Adam Bartnik; Al. L. Efros; Weon-kyu Koh; C. B. Murray; Frank W. Wise

A theory of the electronic-structure and excitonic absorption spectra of PbS and PbSe nanowires and nanorods in the framework of a four-band effective-mass model is presented. Calculations conducted for PbSe show that dielectric contrast dramatically strengthens the exciton binding in narrow nanowires and nanorods. However, the self-interaction energies of the electron and hole nearly cancel the Coulomb binding, and as a result the optical absorption spectra are practically unaffected by the strong dielectric contrast between PbSe and the surrounding medium. Measurements of the size-dependent absorption spectra of colloidal PbSe nanorods are also presented. Using room-temperature energy-band parameters extracted from the optical spectra of spherical PbSe nanocrystals, the theory provides good quantitative agreement with the measured spectra.


Nano Letters | 2013

Aspect ratio dependence of auger recombination and carrier multiplication in PbSe nanorods.

Lazaro A. Padilha; John T. Stewart; Richard L. Sandberg; Wan Ki Bae; Weon-kyu Koh; Jeffrey M. Pietryga; Victor I. Klimov

Nanomaterials with efficient carrier multiplication (CM), that is, generation of multiple electron-hole pairs by single photons, have been the object of intense scientific interest as potential enablers of high efficiency generation-III photovoltaics. In this work, we explore nanocrystal shape control as a means for enhancing CM. Specifically, we investigate the influence of aspect ratio (ρ) of PbSe nanorods (NRs) on both CM and the inverse of this process, Auger recombination. We observe that Auger lifetimes in NRs increase with increasing particle volume and for a fixed cross-sectional size follow a linear dependence on the NR length. For a given band gap energy, the CM efficiency in NRs shows a significant dependence on aspect ratio and exhibits a maximum at ρ ∼ 6-7 for which the multiexciton yields are a factor of ca. 2 higher than those in quantum dots with a similar bandgap energy. To rationalize our experimental observations, we analyze the influence of dimensionality on both CM and non-CM energy-loss mechanisms and offer possible explanations for the seemingly divergent effects the transition from zero- to one-dimensional confinement has on the closely related processes of Auger recombination and CM.


Scientific Reports | 2013

Heavily doped n-type PbSe and PbS nanocrystals using ground-state charge transfer from cobaltocene

Weon-kyu Koh; Alexey Y. Koposov; John T. Stewart; Bhola N. Pal; Istvan Robel; Jeffrey M. Pietryga; Victor I. Klimov

Colloidal nanocrystals (NCs) of lead chalcogenides are a promising class of tunable infrared materials for applications in devices such as photodetectors and solar cells. Such devices typically employ electronic materials in which charge carrier concentrations are manipulated through “doping;” however, persistent electronic doping of these NCs remains a challenge. Here, we demonstrate that heavily doped n-type PbSe and PbS NCs can be realized utilizing ground-state electron transfer from cobaltocene. This allows injecting up to eight electrons per NC into the band-edge state and maintaining the doping level for at least a month at room temperature. Doping is confirmed by inter- and intra-band optical absorption, as well as by carrier dynamics. Finally, FET measurements of doped NC films and the demonstration of a p-n diode provide additional evidence that the developed doping procedure allows for persistent incorporation of electrons into the quantum-confined NC states.


Nano Letters | 2011

Multiscale Periodic Assembly of Striped Nanocrystal Superlattice Films on a Liquid Surface

Angang Dong; Jun Chen; Soong Ju Oh; Weon-kyu Koh; Faxian Xiu; Xingchen Ye; Dong-Kyun Ko; Kang L. Wang; Cherie R. Kagan; Christopher B. Murray

Self-assembly of nanocrystals (NCs) into periodically ordered structures on multiple length scales and over large areas is crucial to the manufacture of NC-based devices. Here, we report an unusual yet universal approach to rapidly assembling hierarchically organized NC films that display highly periodic, tunable microscale stripe patterns over square centimeter areas while preserving the local superlattice structure. Our approach is based on a drying-driven dynamic assembly process occurring on a liquid surface with the stripe pattern formed by a new type of contact-line instability. Periodic ordering of NCs is realized on microscopic and nanoscopic scales simultaneously without the need of any specialized equipment or the application of external fields. The striped NC superlattice films obtained can be readily transferred to arbitrary substrates for device fabrication. The periodic structure imparts interesting modulation and anisotropy to the properties of such striped NC assemblies. This assembly approach is applicable to NCs with a variety of compositions, sizes, and shapes, offering a robust, inexpensive route for large-scale periodic patterning of NCs.


Chemical Communications | 2002

Novel synthesis of organic nanowires and their optical propertiesElectronic supplementary information (ESI) available: experimental section and Figs. S1 and S2. See http://www.rsc.org/suppdata/cc/b1/b109881k/

Jin-Kyu Lee; Weon-kyu Koh; Weon-Sik Chae; Yong-Rok Kim

Aligned nanowires of organic luminescent material were prepared by introducing the organic luminants into nanochannels of variable size in an anodic aluminum oxide (AAO) membrane, and the emission spectra from these nanowire arrays exhibited novel size-dependent luminescent properties.


Journal of Physical Chemistry Letters | 2013

Carrier multiplication in quantum dots within the framework of two competing energy relaxation mechanisms

John T. Stewart; Lazaro A. Padilha; Wan Ki Bae; Weon-kyu Koh; Jeffrey M. Pietryga; Victor I. Klimov

The realization of high-yield, low-threshold carrier multiplication (CM) in semiconductor quantum dots (QDs) is a promising step toward third-generation photovoltaics (PV). Recent studies of QD solar cells have shown that CM can indeed produce greater-than-unity quantum efficiencies in photon-to-charge-carrier conversion, establishing the relevance of this process to practical PV technologies. While being appreciable, the reported CM yields are still not high enough for a significant increase in the power conversion efficiency over traditional bulk materials. At present, the design of nanomaterials with improved CM is hindered by a poor understanding of the mechanism underlying this process. Here, we present a possible solution to this problem by introducing a model that treats CM as a competition between impact-ionization-like scattering and non-CM energy losses. Importantly, it allows for evaluation of expected CM yields from fairly straightforward measurements of Auger recombination (inverse of CM) and near-band-edge carrier cooling. The validation of this model via a comparative CM study of PbTe, PbSe, and PbS QDs suggests that it indeed represents a predictive capability, which might help in the development of nanomaterials with improved CM performance.


Nano Letters | 2012

Ultrafast Supercontinuum Spectroscopy of Carrier Multiplication and Biexcitonic Effects in Excited States of PbS Quantum Dots

Felice Gesuele; Weon-kyu Koh; Christopher B. Murray; Tony F. Heinz; Chee Wei Wong

We examine the population dynamics of multiple excitons in PbS quantum dots using spectrally resolved ultrafast supercontinuum transient absorption (SC-TA) measurements. We simultaneously probe the first three excitonic transitions. The transient spectra show the presence of bleaching of absorption for the 1S(h)-1S(e) transition, as well as transients associated with the 1P(h)-1P(e) transition. We examine signatures of carrier multiplication (multiple excitons arising from a single absorbed photon) from analysis of the bleaching features in the limit of low absorbed photon numbers (left angle bracket N(abs) right angle bracket ∼ 10(-2)) for pump photon energies from two to four times that of the band gap. The efficiency of multiple-exciton generation is discussed both in terms of the ratio between early- to long-time transient absorption signals and of a broadband global fit to the data. Analysis of the population dynamics shows that bleaching associated with biexciton population is red shifted with respect to the single exciton feature, which is in accordance with a positive binding energy for the biexciton.

Collaboration


Dive into the Weon-kyu Koh's collaboration.

Top Co-Authors

Avatar

Victor I. Klimov

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Cherie R. Kagan

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Pietryga

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

David K. Kim

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron T. Fafarman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chee Wei Wong

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge