Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Scheftner is active.

Publication


Featured researches published by William A. Scheftner.


American Journal of Human Genetics | 2005

Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q

Matthew B. McQueen; Bernie Devlin; Stephen V. Faraone; Vishwajit L. Nimgaonkar; Pamela Sklar; Jordan W. Smoller; Rami Abou Jamra; Margot Albus; Silviu-Alin Bacanu; Miron Baron; Thomas B. Barrett; Wade H. Berrettini; Deborah Blacker; William Byerley; Sven Cichon; Willam Coryell; Nicholas John Craddock; Mark J. Daly; J. Raymond DePaulo; Howard J. Edenberg; Tatiana Foroud; Michael Gill; T. Conrad Gilliam; Marian Lindsay Hamshere; Ian Richard Jones; Lisa Jones; S H Juo; John R. Kelsoe; David Lambert; Christoph Lange

Several independent studies and meta-analyses aimed at identifying genomic regions linked to bipolar disorder (BP) have failed to find clear and consistent evidence of linkage regions. Our hypothesis is that combining the original genotype data provides benefits of increased power and control over sources of heterogeneity that outweigh the difficulty and potential pitfalls of the implementation. We conducted a combined analysis using the original genotype data from 11 BP genomewide linkage scans comprising 5,179 individuals from 1,067 families. Heterogeneity among studies was minimized in our analyses by using uniform methods of analysis and a common, standardized marker map and was assessed using novel methods developed for meta-analysis of genome scans. To date, this collaboration is the largest and most comprehensive analysis of linkage samples involving a psychiatric disorder. We demonstrate that combining original genome-scan data is a powerful approach for the elucidation of linkage regions underlying complex disease. Our results establish genomewide significant linkage to BP on chromosomes 6q and 8q, which provides solid information to guide future gene-finding efforts that rely on fine-mapping and association approaches.


Molecular Psychiatry | 2011

Genome-wide association study of recurrent early-onset major depressive disorder

Jianxin Shi; James B. Potash; James A. Knowles; Myrna M. Weissman; William Coryell; William A. Scheftner; William B. Lawson; J. R. DePaulo; Pablo V. Gejman; Alan R. Sanders; J. K. Johnson; Philip Adams; S Chaudhury; Dubravka Jancic; Oleg V. Evgrafov; A Zvinyatskovskiy; N Ertman; M Gladis; K Neimanas; M Goodell; Nancy Hale; N Ney; Ranjana Verma; Daniel B. Mirel; Peter Holmans; Douglas F. Levinson

A genome-wide association study was carried out in 1020 case subjects with recurrent early-onset major depressive disorder (MDD) (onset before age 31) and 1636 control subjects screened to exclude lifetime MDD. Subjects were genotyped with the Affymetrix 6.0 platform. After extensive quality control procedures, 671 424 autosomal single nucleotide polymorphisms (SNPs) and 25 068 X chromosome SNPs with minor allele frequency greater than 1% were available for analysis. An additional 1 892 186 HapMap II SNPs were analyzed based on imputed genotypic data. Single-SNP logistic regression trend tests were computed, with correction for ancestry-informative principal component scores. No genome-wide significant evidence for association was observed, assuming that nominal P<5 × 10−8 approximates a 5% genome-wide significance threshold. The strongest evidence for association was observed on chromosome 18q22.1 (rs17077540, P=1.83 × 10−7) in a region that has produced some evidence for linkage to bipolar-I or -II disorder in several studies, within an mRNA detected in human brain tissue (BC053410) and approximately 75 kb upstream of DSEL. Comparing these results with those of a meta-analysis of three MDD GWAS data sets reported in a companion article, we note that among the strongest signals observed in the GenRED sample, the meta-analysis provided the greatest support (although not at a genome-wide significant level) for association of MDD to SNPs within SP4, a brain-specific transcription factor. Larger samples will be required to confirm the hypothesis of association between MDD (and particularly the recurrent early-onset subtype) and common SNPs.


American Journal of Human Genetics | 2003

Genomewide Linkage Analyses of Bipolar Disorder: A New Sample of 250 Pedigrees from the National Institute of Mental Health Genetics Initiative

Danielle M. Dick; Tatiana Foroud; Leah Flury; Elizabeth S. Bowman; Marvin J. Miller; N. Leela Rau; P. Ryan Moe; Nalini Samavedy; Rif S. El-Mallakh; Husseini K. Manji; Debra Glitz; Eric T. Meyer; Carrie Smiley; Rhoda Hahn; Clifford Widmark; Rebecca McKinney; Laura Sutton; Christos Ballas; Dorothy E. Grice; Wade H. Berrettini; William Byerley; William Coryell; R. DePaulo; Dean F. MacKinnon; Elliot S. Gershon; John R. Kelsoe; Francis J. McMahon; Dennis L. Murphy; Theodore Reich; William A. Scheftner

We conducted genomewide linkage analyses on 1,152 individuals from 250 families segregating for bipolar disorder and related affective illnesses. These pedigrees were ascertained at 10 sites in the United States, through a proband with bipolar I affective disorder and a sibling with bipolar I or schizoaffective disorder, bipolar type. Uniform methods of ascertainment and assessment were used at all sites. A 9-cM screen was performed by use of 391 markers, with an average heterozygosity of 0.76. Multipoint, nonparametric linkage analyses were conducted in affected relative pairs. Additionally, simulation analyses were performed to determine genomewide significance levels for this study. Three hierarchical models of affection were analyzed. Significant evidence for linkage (genomewide P<.05) was found on chromosome 17q, with a peak maximum LOD score of 3.63, at the marker D17S928, and on chromosome 6q, with a peak maximum LOD score of 3.61, near the marker D6S1021. These loci met both standard and simulation-based criteria for genomewide significance. Suggestive evidence of linkage was observed in three other regions (genomewide P<.10), on chromosomes 2p, 3q, and 8q. This study, which is based on the largest linkage sample for bipolar disorder analyzed to date, indicates that several genes contribute to bipolar disorder.


Journal of Nervous and Mental Disease | 1990

Gender Differences in the Clinical Features of Unipolar Major Depressive Disorder

Michael A. Young; William A. Scheftner; Jan Fawcett; Gerald L. Klerman

Gender differences in the presence or absence and the severity of forty-seven clinician rated features of depression were examined, controlling for the sex of the rater. Subjects consisted of 498 moderately to severely depressed patients coming for treatment and diagnosed as suffering from nonpsychotic, unipolar major depressive disorder. Significant differences were found only for increased appetite and weight. No differences were observed in endogenous symptoms, global severity of depression, or impairment in functioning. The results indicate that, although the rate of major depressive disorder is greater in women, its symptomatology is relatively homogeneous with regard to gender.


American Journal of Human Genetics | 2004

Genomewide Significant Linkage to Recurrent, Early-Onset Major Depressive Disorder on Chromosome 15q

Peter Alan Holmans; George S. Zubenko; Raymond R. Crowe; J. Raymond DePaulo; William A. Scheftner; Myrna M. Weissman; Wendy N. Zubenko; Sandra Boutelle; Kathleen Murphy-Eberenz; Dean F. MacKinnon; Diana H. Marta; Philip Adams; James A. Knowles; Madeline M. Gladis; Jo Thomas; Jennifer L. Chellis; Erin B. Miller; Douglas F. Levinson

A genome scan was performed on the first phase sample of the Genetics of Recurrent Early-Onset Depression (GenRED) project. The sample consisted of 297 informative families containing 415 independent affected sibling pairs (ASPs), or, counting all possible pairs, 685 informative affected relative pairs (555 ASPs and 130 other pair types). Affected cases had recurrent major depressive disorder (MDD) with onset before age 31 years for probands or age 41 years for other affected relatives; the mean age at onset was 18.5 years, and the mean number of depressive episodes was 7.3. The Center for Inherited Disease Research genotyped 389 microsatellite markers (mean spacing of 9.3 cM). The primary linkage analysis considered allele sharing in all possible affected relative pairs with the use of the Z(lr) statistic computed by the ALLEGRO program. A secondary logistic regression analysis considered the effect of the sex of the pair as a covariate. Genomewide significant linkage was observed on chromosome 15q25.3-26.2 (Zlr=4.14, equivalent LOD = 3.73, empirical genomewide P=.023). The linkage was not sex specific. No other suggestive or significant results were observed in the primary analysis. The secondary analysis produced three regions of suggestive linkage, but these results should be interpreted cautiously because they depended primarily on the small subsample of 42 male-male pairs. Chromosome 15q25.3-26.2 deserves further study as a candidate region for susceptibility to MDD.


Molecular Psychiatry | 2013

Enrichment of cis-regulatory gene expression SNPs and methylation quantitative trait loci among bipolar disorder susceptibility variants

Eric R. Gamazon; Lijun Cheng; Chunling Zhang; Dandan Zhang; Nancy J. Cox; Elliot S. Gershon; John R. Kelsoe; Tiffany A. Greenwood; Caroline M. Nievergelt; Chao Chen; Rebecca McKinney; Paul D. Shilling; Nicholas J. Schork; Erin N. Smith; Cinnamon S. Bloss; John I. Nurnberger; Howard J. Edenberg; T. Foroud; Daniel L. Koller; William A. Scheftner; William Coryell; John P. Rice; William B. Lawson; Evaristus A. Nwulia; Maria Hipolito; William Byerley; Francis J. McMahon; Thomas G. Schulze; Wade H. Berrettini; James B. Potash

We conducted a systematic study of top susceptibility variants from a genome-wide association (GWA) study of bipolar disorder to gain insight into the functional consequences of genetic variation influencing disease risk. We report here the results of experiments to explore the effects of these susceptibility variants on DNA methylation and mRNA expression in human cerebellum samples. Among the top susceptibility variants, we identified an enrichment of cis regulatory loci on mRNA expression (eQTLs), and a significant excess of quantitative trait loci for DNA CpG methylation, hereafter referred to as methylation quantitative trait loci (mQTLs). Bipolar disorder susceptibility variants that cis regulate both cerebellar expression and methylation of the same gene are a very small proportion of bipolar disorder susceptibility variants. This finding suggests that mQTLs and eQTLs provide orthogonal ways of functionally annotating genetic variation within the context of studies of pathophysiology in brain. No lymphocyte mQTL enrichment was found, suggesting that mQTL enrichment was specific to the cerebellum, in contrast to eQTLs. Separately, we found that using mQTL information to restrict the number of single-nucleotide polymorphisms studied enhances our ability to detect a significant association. With this restriction a priori informed by the observed functional enrichment, we identified a significant association (rs12618769, Pbonferroni<0.05) from two other GWA studies (TGen+GAIN; 2191 cases and 1434 controls) of bipolar disorder, which we replicated in an independent GWA study (WTCCC). Collectively, our findings highlight the importance of integrating functional annotation of genetic variants for gene expression and DNA methylation to advance the biological understanding of bipolar disorder.


Molecular Psychiatry | 2009

Family-based association of FKBP5 in bipolar disorder.

Virginia L. Willour; H. Chen; J. Toolan; Pamela L. Belmonte; D. J. Cutler; Fernando S. Goes; P. P. Zandi; Richard S. Lee; D. F. MacKinnon; F. M. Mondimore; Barbara Schweizer; J. R. DePaulo; Elliot S. Gershon; F. J. McMahon; J. B. Potash; Francis J. McMahon; Jo Steele; Justin Pearl; Layla Kassem; Victor Lopez; James B. Potash; Dean F. MacKinnon; Erin B. Miller; Jennifer Toolan; Peter P. Zandi; Thomas G. Schulze; Evaristus A. Nwulia; Sylvia G. Simpson; John I. Nurnberger; Marvin Miller

The FKBP5 gene product forms part of a complex with the glucocorticoid receptor and can modulate cortisol-binding affinity. Variations in the gene have been associated with increased recurrence of depression and with rapid response to antidepressant treatment. We sought to determine whether common FKBP5 variants confer risk for bipolar disorder. We genotyped seven tag single-nucleotide polymorphisms (SNPs) in FKBP5, plus two SNPs previously associated with illness, in 317 families with 554 bipolar offspring, derived primarily from two studies. Single marker and haplotypic analyses were carried out with FBAT and EATDT employing the standard bipolar phenotype. Association analyses were also conducted using 11 disease-related variables as covariates. Under an additive genetic model, rs4713902 showed significant overtransmission of the major allele (P=0.0001), which was consistent across the two sample sets (P=0.004 and 0.006). rs7757037 showed evidence of association that was strongest under the dominant model (P=0.001). This result was consistent across the two datasets (P=0.017 and 0.019). The dominant model yielded modest evidence for association (P<0.05) for three additional markers. Covariate-based analyses suggested that genetic variation within FKBP5 may influence attempted suicide and number of depressive episodes in bipolar subjects. Our results are consistent with the well-established relationship between the hypothalamic–pituitary–adrenal (HPA) axis, which mediates the stress response through regulation of cortisol, and mood disorders. Ongoing whole-genome association studies in bipolar disorder and major depression should further clarify the role of FKBP5 and other HPA genes in these illnesses.


Biological Psychiatry | 2010

Mood disorder susceptibility gene CACNA1C modifies mood-related behaviors in mice and interacts with sex to influence behavior in mice and diagnosis in humans

David T. Dao; Pamela B. Mahon; Xiang Cai; Colleen E. Kovacsics; Robert A. Blackwell; Michal Arad; Jianxin Shi; Peter P. Zandi; Patricio O'Donnell; James A. Knowles; Myrna M. Weissman; William Coryell; William A. Scheftner; William B. Lawson; Douglas F. Levinson; Scott M. Thompson; James B. Potash; Todd D. Gould

BACKGROUND Recent genome-wide association studies have associated polymorphisms in the gene CACNA1C, which codes for Ca(v)1.2, with a bipolar disorder and depression diagnosis. METHODS The behaviors of wild-type and Cacna1c heterozygous mice of both sexes were evaluated in a number of tests. Based upon sex differences in our mouse data, we assessed a gene × sex interaction for diagnosis of mood disorders in human subjects. Data from the National Institute of Mental Health Genetics Initiative Bipolar Disorder Consortium and the Genetics of Recurrent Early-Onset Major Depression Consortium were examined using a combined dataset that included 2021 mood disorder cases (1223 female cases) and 1840 control subjects (837 female subjects). RESULTS In both male and female mice, Cacna1c haploinsufficiency was associated with lower exploratory behavior, decreased response to amphetamine, and antidepressant-like behavior in the forced swim and tail suspension tests. Female, but not male, heterozygous mice displayed decreased risk-taking behavior or increased anxiety in multiple tests, greater attenuation of amphetamine-induced hyperlocomotion, decreased development of learned helplessness, and a decreased acoustic startle response, indicating a sex-specific role of Cacna1c. In humans, sex-specific genetic association was seen for two intronic single nucleotide polymorphisms, rs2370419 and rs2470411, in CACNA1C, with effects in female subjects (odds ratio = 1.64, 1.32) but not in male subjects (odds ratio = .82, .86). The interactions by sex were significant after correction for testing 190 single nucleotide polymorphisms (p = 1.4 × 10⁻⁴, 2.1 × 10⁻⁴; p(corrected) = .03, .04) and were consistent across two large datasets. CONCLUSIONS Our preclinical results support a role for CACNA1C in mood disorder pathophysiology, and the combination of human genetic and preclinical data support an interaction between sex and genotype.


American Journal of Human Genetics | 2015

Joint Analysis of Psychiatric Disorders Increases Accuracy of Risk Prediction for Schizophrenia, Bipolar Disorder, and Major Depressive Disorder

Robert Maier; G. Moser; Guo-Bo Chen; Stephan Ripke; William Coryell; James B. Potash; William A. Scheftner; Jianxin Shi; Myrna M. Weissman; Christina M. Hultman; Mikael Landén; Douglas F. Levinson; Kenneth S. Kendler; Jordan W. Smoller; Naomi R. Wray; S. Hong Lee

Genetic risk prediction has several potential applications in medical research and clinical practice and could be used, for example, to stratify a heterogeneous population of patients by their predicted genetic risk. However, for polygenic traits, such as psychiatric disorders, the accuracy of risk prediction is low. Here we use a multivariate linear mixed model and apply multi-trait genomic best linear unbiased prediction for genetic risk prediction. This method exploits correlations between disorders and simultaneously evaluates individual risk for each disorder. We show that the multivariate approach significantly increases the prediction accuracy for schizophrenia, bipolar disorder, and major depressive disorder in the discovery as well as in independent validation datasets. By grouping SNPs based on genome annotation and fitting multiple random effects, we show that the prediction accuracy could be further improved. The gain in prediction accuracy of the multivariate approach is equivalent to an increase in sample size of 34% for schizophrenia, 68% for bipolar disorder, and 76% for major depressive disorders using single trait models. Because our approach can be readily applied to any number of GWAS datasets of correlated traits, it is a flexible and powerful tool to maximize prediction accuracy. With current sample size, risk predictors are not useful in a clinical setting but already are a valuable research tool, for example in experimental designs comparing cases with high and low polygenic risk.


Journal of Affective Disorders | 1990

Sex differences in the lifetime prevalence of depression: does varying the diagnostic criteria reduce the female/male ratio?

Michael A. Young; Louis Fogg; William A. Scheftner; Martin B. Keller; Jan Fawcett

Most studies report the lifetime prevalence of major depressive disorder to be higher among women than men. One possible explanation is that this finding is the result of the diagnostic criteria used, in particular the inclusion of criterion symptoms associated with depressed mood. The number of criterion symptoms required for a diagnosis were varied and applied to 2163 first-degree relatives of affectively disordered probands of the NIMH Collaborative Study of the Psychobiology of Depression. Results indicated that differences between men and women in number of symptoms reported could not account for the difference in rates of depression. Women had a greater number of associated symptoms only at higher symptom levels, suggesting an excess of women only above a diagnostic threshold. Thus, findings supported a true difference in rates of major depressive disorder rather than a general trend for women to remember or report more criterion symptoms.

Collaboration


Dive into the William A. Scheftner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James B. Potash

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jan Fawcett

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John R. Kelsoe

University of California

View shared research outputs
Top Co-Authors

Avatar

Michael A. Young

Illinois Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge