Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William M. Putman is active.

Publication


Featured researches published by William M. Putman.


Journal of Advances in Modeling Earth Systems | 2014

Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive

Gavin A. Schmidt; Max Kelley; Larissa Nazarenko; Reto Ruedy; Gary L. Russell; Igor Aleinov; Mike Bauer; Susanne E. Bauer; Maharaj K. Bhat; Rainer Bleck; V. M. Canuto; Thomas L. Clune; Rosalinda de Fainchtein; Anthony D. Del Genio; Nancy Y. Kiang; A. Lacis; Allegra N. LeGrande; Elaine Matthews; Ron L. Miller; Amidu Oloso; William M. Putman; David Rind; Drew T. Shindell; Rahman A. Syed; Jinlun Zhang

We present a description of the ModelE2 version of the Goddard Institute for Space Studies (GISS) General Circulation Model (GCM) and the configurations used in the simulations performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). We use six variations related to the treatment of the atmospheric composition, the calculation of aerosol indirect effects, and ocean model component. Specifically, we test the difference between atmospheric models that have noninteractive composition, where radiatively important aerosols and ozone are prescribed from precomputed decadal averages, and interactive versions where atmospheric chemistry and aerosols are calculated given decadally varying emissions. The impact of the first aerosol indirect effect on clouds is either specified using a simple tuning, or parameterized using a cloud microphysics scheme. We also use two dynamic ocean components: the Russell and HYbrid Coordinate Ocean Model (HYCOM) which differ significantly in their basic formulations and grid. Results are presented for the climatological means over the satellite era (1980–2004) taken from transient simulations starting from the preindustrial (1850) driven by estimates of appropriate forcings over the 20th Century. Differences in base climate and variability related to the choice of ocean model are large, indicating an important structural uncertainty. The impact of interactive atmospheric composition on the climatology is relatively small except in regions such as the lower stratosphere, where ozone plays an important role, and the tropics, where aerosol changes affect the hydrological cycle and cloud cover. While key improvements over previous versions of the model are evident, these are not uniform across all metrics.


Journal of Climate | 2017

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)

Ronald Gelaro; Will McCarty; Max J. Suarez; Ricardo Todling; Andrea Molod; Lawrence L. Takacs; C. A. Randles; Anton Darmenov; Michael G. Bosilovich; Rolf H. Reichle; Krzysztof Wargan; L. Coy; Richard I. Cullather; C. Draper; Santha Akella; Virginie Buchard; Austin Conaty; Arlindo da Silva; Wei Gu; Gi-Kong Kim; Randal D. Koster; Robert Lucchesi; Dagmar Merkova; J. E. Nielsen; Gary Partyka; Steven Pawson; William M. Putman; Michele M. Rienecker; Siegfried D. Schubert; Meta Sienkiewicz

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) is the latest atmospheric reanalysis of the modern satellite era produced by NASAs Global Modeling and Assimilation Office (GMAO). MERRA-2 assimilates observation types not available to its predecessor, MERRA, and includes updates to the Goddard Earth Observing System (GEOS) model and analysis scheme so as to provide a viable ongoing climate analysis beyond MERRAs terminus. While addressing known limitations of MERRA, MERRA-2 is also intended to be a development milestone for a future integrated Earth system analysis (IESA) currently under development at GMAO. This paper provides an overview of the MERRA-2 system and various performance metrics. Among the advances in MERRA-2 relevant to IESA are the assimilation of aerosol observations, several improvements to the representation of the stratosphere including ozone, and improved representations of cryospheric processes. Other improvements in the quality of MERRA-2 compared with MERRA include the reduction of some spurious trends and jumps related to changes in the observing system, and reduced biases and imbalances in aspects of the water cycle. Remaining deficiencies are also identified. Production of MERRA-2 began in June 2014 in four processing streams, and converged to a single near-real time stream in mid 2015. MERRA-2 products are accessible online through the NASA Goddard Earth Sciences Data Information Services Center (GES DISC).


Journal of Computational Physics | 2007

Finite-volume transport on various cubed-sphere grids

William M. Putman; Shian-Jiann Lin

The performance of a multidimensional finite-volume transport scheme is evaluated on the cubed-sphere geometry. Advection tests with prescribed winds are used to evaluate a variety of cubed-sphere projections and grid modifications including the gnomonic and conformal mappings, as well as two numerically generated grids by an elliptic solver and spring dynamics. We explore the impact of grid non-orthogonality on advection tests over the corner singularities of the cubed-sphere grids, using some variations of the transport scheme, including the piecewise parabolic method with alternative monotonicity constraints. The advection tests revealed comparable or better accuracy to those of the original latitudinal-longitudinal grid implementation. It is found that slight deviations from orthogonality on the modified cubed-sphere (quasi-orthogonal) grids do not negatively impact the accuracy. In fact, the more uniform version of the quasi-orthogonal cubed-sphere grids provided better overall accuracy than the most orthogonal (and therefore, much less uniform) conformal grid. It is also shown that a simple non-orthogonal extension to the transport equation enables the use of the highly non-orthogonal and computationally more efficient gnomonic grid with acceptable accuracy.


Geophysical Research Letters | 2005

Hurricane forecasting with the high‐resolution NASA finite volume general circulation model

Robert Atlas; Oreste Reale; B.-W. Shen; S.-J. Lin; J.-D. Chern; William M. Putman; T. Lee; K.-S. Yeh; Michael G. Bosilovich; Jon D. Radakovich

[1]xa0A high-resolution finite volume general circulation model (fvGCM), resulting from a development effort of more than ten years, is now being run operationally at the NASA Goddard Space Flight Center and Ames Research Center. The model is based on a finite volume dynamical core with terrain-following Lagrangian control volume discretization and performs efficiently on massive parallel architectures. The computational efficiency allows simulations at a resolution of a quarter of a degree, which is double the resolution currently adopted by most global models in operational weather centers. Such fine global resolution brings us closer to overcoming a fundamental barrier in global atmospheric modeling for both weather and climate, because tropical cyclones can be more realistically represented. In this work, preliminary results are shown. Fifteen simulations of four Atlantic tropical cyclones in 2002 and 2004, chosen because of varied difficulties presented to numerical weather forecasting, are performed. The fvGCM produces very good forecasts of these tropical systems, adequately resolving problems like erratic track, abrupt recurvature, intense extratropical transition, multiple landfall and reintensification, and interaction among vortices.


Geophysical Research Letters | 2011

Cloud‐system resolving simulations with the NASA Goddard Earth Observing System global atmospheric model (GEOS‐5)

William M. Putman; Max J. Suarez

[1]xa0The NASA Global Modeling and Assimilation Office (GMAO) has developed a global non-hydrostatic cloud-system resolving capability within the NASA Goddard Earth Observing System global atmospheric model version 5 (GEOS-5). Using a non-hydrostatic finite-volume dynamical core coupled with advances in the moist physics and convective parameterization the model has been used to perform cloud-system resolving experiments at resolutions as fine as 3.5- to 14-km globally. An overview of preliminary results highlights the development of mid-latitude cyclones, the overall representation of global tropical convection, intense convective activity within the eye wall and outer rain bands of the 2009 Atlantic hurricane Bill validated by satellite observations, and the seasonal predictability of global tropical cyclone activity with realistic intensities. These preliminary results provide motivation for the use of GEOS-5 to simulate multi-scale convective systems within a global model at cloud resolving resolutions.


Journal of Climate | 2000

Interannual Variability of Synthesized FSU and NCEP-NCAR Reanalysis Pseudostress Products over the Pacific Ocean

William M. Putman; David M. Legler; James J. O’Brien

Abstract A technique is applied to seamlessly blend height-adjusted Florida State University (FSU) surface wind pseudostress with National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis-based pseudostress over the Pacific Ocean. The FSU pseudostress is shown to be of higher quality in the equatorial Pacific and thus dominates the analysis in that region, while the NCEP–NCAR reanalysis-based pseudostress is used outside the equatorial region. The blending technique is based on a direct minimization approach. The functional to minimize consists of five constraints; each constraint is given a weight that determines its influence on the solution. The first two constraints are misfits for the FSU and NCEP–NCAR reanalysis datasets. A spatially dependent weighting that highlights the regional strengths of each dataset is designed for these misfit constraints. Climatological structure information is used as a weak smoothing constraint on the solution through L...


ieee international conference on high performance computing data and analytics | 2005

Cross-Platform Performance of a Portable Communication Module and the Nasa Finite Volume General Circulation Model

William M. Putman; Shian-Jiann Lin; Bo-Wen Shen

The National Aeronautics and Space Administration (NASA) finite-volume general circulation model (fvGCM) is a global atmospheric model, originally developed for long-term climate simulations. Recently, the NASA fvGCM has been applied in a variety of weather prediction applications, including hurricane and winter storm forecasts. Achieving efficient throughput on a variety of computational platforms is essential to meet the needs of the climate and weather prediction community. We have developed a scalable and portable climate/weather prediction system by applying a portable communication module within a fast numerical algorithm that exceeds the current community demands for computational performance on a variety of high performance computing platforms. The low-level communication module, Mod_Comm, simplifies interprocess communication within GCMs and provides an efficient means of communicating between decomposed global domains using a variety of single-threaded and multithreaded data communication paradigms (MPI-1, MPI-2, SHMEM, and MLP). Mod_Comm has been implemented within the NASA fvGCM and the Community Atmosphere Model (CAM) at the National Center for Atmospheric Research. It is shown that the optimal choice of data communication paradigm varies from system to system, and can have a significant impact on the overall model performance. Performance studies with the NASA fvGCM reveal substantial improvements in the computational performance when using this low-level communication module, throughput improvements of 40% or more have been observed on various platforms including the SGI Altix 3700, SGI Origin 3000, Compaq AlphaServerSC, IBM SP, and Cray.


Journal of the Atmospheric Sciences | 2016

Tropical Waves and the Quasi-Biennial Oscillation in a 7-km Global Climate Simulation

Laura A. Holt; M. Joan Alexander; Lawrence Coy; Andrea Molod; William M. Putman; Steven Pawson

AbstractThis study investigates tropical waves and their role in driving a quasi-biennial oscillation (QBO)-like signal in stratospheric winds in a global 7-km-horizontal-resolution atmospheric general circulation model. The Nature Run (NR) is a 2-yr global mesoscale simulation of the Goddard Earth Observing System Model, version 5 (GEOS-5). In the tropics, there is evidence that the NR supports a broad range of convectively generated waves. The NR precipitation spectrum resembles the observed spectrum in many aspects, including the preference for westward-propagating waves. However, even with very high horizontal resolution and a healthy population of resolved waves, the zonal force provided by the resolved waves is still too low in the QBO region and parameterized gravity wave drag is the main driver of the NR QBO-like oscillation (NR-QBO). The authors suggest that causes include coarse vertical resolution and excessive dissipation. Nevertheless, the very-high-resolution NR provides an opportunity to an...


Climate Dynamics | 2018

Winter precipitation characteristics in western US related to atmospheric river landfalls: observations and model evaluations

Jinwon Kim; B. Guan; Duane E. Waliser; Robert D. Ferraro; Jonathan L. Case; Takamichi Iguchi; Eric Kemp; William M. Putman; W. Wang; Di Wu; Baijun Tian

Winter precipitation (PR) characteristics in western United States (WUS) related to atmospheric river (AR) landfalls are examined using the observation-based PRISM data. The observed AR-related precipitation characteristics are in turn used to evaluate model precipitation data from the NASA MERRA2 reanalysis and from seven dynamical downscaling simulations driven by the MERRA2. Multiple metrics including mean bias, Taylor diagram, and twoxa0skill scores are used to measure model performance for three climatological sub-regions in WUS, Pacific Northwest (PNW), Pacific Southwest (PSW) and Great Basin (GB). All model data well represent the winter-mean PR with spatial pattern correlations of 0.8xa0or higher with PRISM for the three sub-regions. Higher spatial resolutions and/or the use of spectral nudging generally yield higher skill scores in simulating the geographical distribution of PR for the entire winter. The PRISM data shows that the AR-related fraction of winter PR and associated daily PR PDFs in each region vary strongly for landfall locations; AR landfalls in the northern WUS coast (NC) affect mostly PNW while those in the southern WUS coast (SC) affect both PSW and GB. NC (SC) landfalls increase the frequency of heavy PR in PNW (PSW and GB) but reduce it in PSW (PNW). All model data reasonably represent these observed variations in the AR-related winter PR fractions and the daily PR PDFs according to AR landfall locations. However, unlike for the entire winter period, no systematic effects of resolution and/or spectral nudging are identified in these AR-related PR characteristics. Dynamical downscaling in this study generally yield positive added values to the MERRA2 PR in the AR-related PR fraction for most sub-regions and landfall locations, most noticeably for PSW by NU-WRF. The downscaling also generate positive added value in p95 for PNW, but negative values for PSW and GB due to overestimation of heavy precipitation events.


Quarterly Journal of the Royal Meteorological Society | 2017

An evaluation of gravity waves and gravity wave sources in the Southern Hemisphere in a 7-km global climate simulation

L. A. Holt; M. J. Alexander; L. Coy; Chuntao Liu; Andrea Molod; William M. Putman; Steven Pawson

In this study, gravity waves (GWs) in the high-resolution GEOS-5 Nature Run are first evaluated with respect to satellite and other model results. Southern Hemisphere winter sources of non-orographic GWs in the model are then investigated by linking measures of tropospheric non-orographic gravity wave generation tied to precipitation and frontogenesis with absolute gravity wave momentum flux in the lower stratosphere. Finally, non-orographic GW momentum flux is compared to orographic gravity wave momentum flux and compared to previous estimates. The results show that the global patterns in GW amplitude, horizontal wavelength, and propagation direction are realistic compared to observations. However, as in other global models, the amplitudes are weaker and horizontal wavelengths longer than observed. The global patterns in absolute GW momentum flux also agree well with previous model and observational estimates. The evaluation of model non-orographic GW sources in the Southern Hemisphere winter shows that strong intermittent precipitation (greater than 10 mm h-1) is associated with GW momentum flux over the South Pacific, whereas frontogenesis and less intermittent, lower precipitation rates (less than 10 mm h-1) are associated with GW momentum flux near 60°S. In the model, orographic GWs contribute almost exclusively to a peak in zonal mean momentum flux between 70 and 75°S, while non-orographic waves dominate at 60°S, and non-orographic GWs contribute a third to a peak in zonal mean momentum flux between 25 and 30°S.

Collaboration


Dive into the William M. Putman's collaboration.

Top Co-Authors

Avatar

Andrea Molod

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Anton Darmenov

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Arlindo da Silva

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Steven Pawson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Max J. Suarez

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Auer

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Krzysztof Wargan

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Randal D. Koster

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge