Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wolfgang Dettmann is active.

Publication


Featured researches published by Wolfgang Dettmann.


20th Annual BACUS Symposium on Photomask Technology | 2001

Balancing of Alternating Phase Shifting Masks for Practical Application: Modeling and Experimental Verification

Uwe Griesinger; Leonhard Mader; Armin Semmler; Wolfgang Dettmann; Christoph Noelscher; Rainer Pforr

Alternating phase shifting masks have proven their capability to enhance the process window and to reduce the mask error enhancement factor effectively. The application of this mask type requires additional mask-properties compared to binary masks or halftone PSM. In this paper two of these mask-properties, the intensity and the phase balancing, are investigated experimentally for 4X and 5X masks at DUV and compared with simulations applying the T-Mask configuration of the SOLID-CMT program. In a first part the experimentally determined balancing results are discussed. For the measurements two independent methods are compared: Balancing measurements with an AIMS-system (MSM100) and direct optical phase and transmission measurements using a MPM-248 system. The T-Mask as a 3D Maxwell solver allows the simulation of real 3D mask topography. We compare the results of simulations with measured AIMS data. All available mask data like depth of trenches, thickness and composition of chromium/CrxOy layers, etc. are taken as input for the simulations. The comparison enables an assessment of the possibilities and limitations of 3D mask-simulation. Based on 3D mask simulations CD-sensitivity of the different balancing methods was investigated also taking the influence of proximity into account. The simulations allow an assessment of the CD-sensitivity for four analyzed mask types for feature sizes below 150nm on the wafer.


Photomask and next-generation lithography mask technology. Conference | 2002

Alternating phase-shifting masks: phase determination and impact of quartz defects--theoretical and experimental results

Uwe Griesinger; Wolfgang Dettmann; Mario Hennig; Jan P. Heumann; Roderick Koehle; Ralf Ludwig; Martin Verbeek; Mardjan Zarrabian

In optical lithography balancing the aerial image of an alternating phase shifting mask (alt. PSM) is a major challenge. For the exposure wavelengths (currently 248nm and 193nm) an optimum etching method is necessary to overcome imbalance effects. Defects play an important role in the imbalances of the aerial image. In this contribution defects will be discussed by using the methodology of global phase imbalance control also for local imbalances which are a result of quartz defects. The effective phase error can be determined with an AIMS-system by measuring the CD width between the images of deep- and shallow trenches at different focus settings. The AIMS results are analyzed in comparison to the simulated and lithographic print results of the alternating structures. For the analysis of local aerial image imbalances it is necessary to investigate the capability of detecting these phase defects with state of the art inspection systems. Alternating PSMs containing programmed defects were inspected with different algorithms to investigate the capture rate of special phase defects in dependence on the defect size. Besides inspection also repair of phase defects is an important task. In this contribution we show the effect of repair on the optical behavior of phase defects. Due to the limited accuracy of the repair tools the repaired area still shows a certain local phase error. This error can be caused either by residual quartz material or a substrate damage. The influence of such repair induced phase errors on the aerial image were investigated.


Photomask and next-generation lithography mask technology. Conference | 2003

Fourier analysis of AIMS images for mask characterization

Roderick Koehle; Wolfgang Dettmann; Martin Verbeek

Mask characterization and qualification are becoming more and more difficult for high-end and alternating phase shifting masks. One choice is to use indirect methods like as SEM/AFM measurements to characterize mask performance. The indirect measurement has the disadvantage that the measured CD is not the true merit function. It is therefore tempting to use optical methods to characterize masks. The Zeiss AIMS (Aerial Image Measurement System) microscope is particular appealing for this task since it simulates the lithographic imaging optics. The key problem is the reliability and repeatability of the resulting AIMS measurements. The quality of the measurement depends strongly on the tool characteristic such as illumination stability and operator skill, e.g. for focus adjustment. In this paper we discuss the application of image processing and Fourier analysis techniques to AIMS images of periodic structures. By computing the Fourier series coefficients one obtains a very compact but complete description of the AIMS image over defocus. This computation and interpretation of the series coefficients allows to compensate many error influences such as mask rotation, tool magnification and focus adjustment. The algorithm is demonstrated on COG and alt. phase shifting mask measurements for a wavelength of 193nm and compared to the results obtained by simulation.


Photomask and next-generation lithography mask technology. Conference | 2003

Qualification of alternating PSM: defect inspection analysis in comparison to wafer printing results

Wolfgang Dettmann; Jan P. Heumann; Tanja Hagner; Roderick Koehle; Stephen Rahn; Martin Verbeek; Mardjan Zarrabian; Jens Weckesser; Mario Hennig; Nicolo Morgana

With alternating phase shift masks (altPSM) an enhancement technique is available to realize smaller design rules. Meanwhile the basic production process for this mask type is well known and established for 193nm technology development. The qualification of the masks is now in the focus of development work. Sensitive defect inspection is essential for the qualification of altPSMs. In addition accurate phase and transmission balancing measurement technique has to be applied. In this paper we are presenting a detailed defect printability study for sub-100nm feature size technology at 193nm wavelength. Programmed quartz defects with different shapes and sizes were designed. They were implemented in a lines/spaces altPSM design. The processed quartz defects were characterized with a scanning electron microscope and an arial imaging microscope system. The printing behavior of the defects was analyzed after wafer exposures. In addition the required sensitivity for the altPSM inspection was evaluated. Finally the inspection sensitivity was characterized and optimized with programmed and production like defects.


SPIE's 27th Annual International Symposium on Microlithography | 2002

Introduction of full-level alternating phase-shift mask technology into IC manufacturing

Joerg Thiele; Marco Ahrens; Wolfgang Dettmann; Michael Heissmeier; Mario Hennig; Burkhard Ludwig; Molela Moukara; Rainer Pforr

A study to partition a gate level design into an alternating phase shift mask and a chrome on glass trim mask is presented. After determination of important rules for the partitioning by simulation, all investigated gate level pattern could be partitioned, only with slight modifications of the wiring. By application of optical proximity correction (OPC) good gate width and sufficient pattern fidelity control was obtained with the chosen OPC methodology using a calibrated optical model. Nevertheless, several indications of weak spots at two dimensional patterns at extreme defocus are discussed based on experimental data and simulation. To further improve the process window of such pattern, new methods are necessary to detect and prevent such remaining weak spots.


22nd Annual BACUS Symposium on Photomask Technology | 2002

AltPSM Inspection Capability and Printability of Quartz Defects

Jan P. Heumann; Mardjan Zarrabian; Mario Hennig; Wolfgang Dettmann; Larry S. Zurbrick; Michael Lang

Alternating phase shift masks (altPSMs) are a promising resolution enhancement technique to realize smaller design rules at the same lithography wavelength. Quartz defect inspection of altPSMs is challenging, as the optical contrast for defects within the quartz substrate is very small. AltPSM inspection capability was studied with different types of programmed test masks. The programmed quartz defects were characterized with a scanning electron microscope, an atomic force microscope and an aerial imaging microscope system. Finally a defect printability study was done. With the programmed test masks the performance of two altPSM inspection techniques was evaluated. Quartz defect detection was studied with respect to different pattern types and sizes. Quartz defect sensitivity was measured with respect to defect size as well as defect printability. It was found that quartz defect sensitivity with respect to defect size is constant for different pattern types, but decreases for decreasing line widths on 1:1 pitch line and space patterns. Whereas defect detection for the altPSM algorithms studied is governed by the defect’s extension perpendicular to the pattern line, defect printability is determined by the defect’s lateral area.


Metrology, Inspection, and Process Control for Microlithography XVIII | 2004

Defect inspection of quartz-PSMs: taking a leap forward

Jan P. Heumann; Frank Schurack; Wolfgang Dettmann; Larry S. Zurbrick; Michael Lang

Defect inspection of Quartz-PSMs is challenging, as the optical contrast for defects within the quartz substrate is small. The performance of three phase contrast algorithms is studied with a variety of defect test masks. For alternating phase shift masks key parameters such as optimum focus offset, defect sensitivity for different feature sizes, as well as defect sensitivity with respect to defect printability criteria are studied. In the studied range for two of the algorithms the defect sensitivity is independent of the feature size, whereas the third algorithm exhibited a decrease in sensitivity with decreasing feature sizes. In focus runs performed on large feature sizes a single optimum focus offset is observed, whereas for small feature sizes a two-path inspection using a positive and negative focus offset is found necessary. With respect to defect printability all critical 180° defects were found. For the newest of the three algorithms good inspectability of chrome-less PSMs is achieved.


Optical Microlithography XVI | 2003

Full-level alternating PSM for sub-100nm DRAM gate patterning

Rainer Pforr; Marco Ahrens; Wolfgang Dettmann; Mario Hennig; Roderick Koehle; Burkhard Ludwig; Nicolo Morgana; Joerg Thiele

The lithographic potential of alternating PSM for sub-100nm gate patterning have been evaluated in comparison to alternative techniques. The status of the key elements of the full level alternating PSM approach including design conversion, optical proximity correction, mask making, double exposure and phase-shifting mask imaging will be demonstrated for a 256MDRAM device. Experimental data describing the phase-shifting mask quality, the lithographic process windows and the CD control obtained for alternating PSM in full level and array only approach will be presented.


Optical Microlithography XVI | 2003

Image performance and mask characterization of 157-nm alternating phase-shifting mask

Yung-Tin Chen; Jeff Meute; Kim Dean; David R. Stark; Christof Matthias Schilz; Wolfgang Dettmann; Roderick Koehle; Bettina Schiessl; Wolfgang Degel

In this paper, we present a process of balancing the aerial image and analyzing the results of resist images of 157-nm alternating PSM with a 0.85 NA lens. The mask is made by dual trench technique with a phase-etch of 115nm and an isotropic under-etch of 90nm as predicted by simulations. With this dual trenched mask, the wafer printing images show tremendous improvement on “line walking” or “line paring” phenomena. The ultimate resolution is 60nm dense line. The focus latitude is around 0.1 to 0.15 um. We also used a 157-nm AIMS tool to check intensity balance. The results supports balanced intensity of this mask. For mask quality characterization, etch depth is measured by AFM and mask CD is measured by CD SEM. The uniformity of etching depth and mask CD are all within specifications. We also present some abnormal CD variation across line array observed during this investigation. The results from this work give a good groundwork of 157-nm capability of alternating PSM and 157-nm resist imaging quality.


Photomask and next-generation lithography mask technology. Conference | 2001

Defect printability study with programmed defects on halftone reticles

Wolfgang Dettmann; Henning Haffner; Jan P. Heumann; Roman Liebe; Ralf Ludwig; R. Moses

Small structure sizes in the order of half the exposure wavelengths on wafers are nowadays accomplished with optical enhancement methods. Instead of COG the semi-transparent halfton reticles are used to reach a sufficient process window for the production of smaller memory products at low k1. In the semitransparent halftone material (MoSi) the intensity of the incident light is reduced to 6% and the phase is shifted by half of the wavelength (180 degree(s)). In this study halftone PSM for 248nm and 193nm wavelength with programmed defects of different sizes in lines/spaces (l/s) and brick stone structures were examined. With inspection, repair and print tests valid criteria for critical defect sizes were found. The defects were all analyzed with a Zeiss Aerial Image Measurement System (AIMS) and characterized with a mask SEM. Several defects were repaired using a FIB. Finally, this halftone PSM was printed and the defects were analyzed by a wafer SEM. The sizes of the programmed defects were distributed from printing to not printing. Critical defect sizes were clearly defined and the sensitivity of inspection tools for photomasks (KLA and Orbot Aris-i) could be checked.

Collaboration


Dive into the Wolfgang Dettmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge