Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yarimar Carrasquillo is active.

Publication


Featured researches published by Yarimar Carrasquillo.


Neuron | 2006

The kv4.2 potassium channel subunit is required for pain plasticity.

Huijuan Hu; Yarimar Carrasquillo; Farzana Karim; Wonil E. Jung; Jeanne M. Nerbonne; T. Schwarz; Robert W. Gereau

A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal excitability and nociceptive behaviors. Genetic elimination of Kv4.2 reduces A-type currents and increases excitability of dorsal horn neurons, resulting in enhanced sensitivity to tactile and thermal stimuli. Furthermore, ERK-mediated modulation of excitability in dorsal horn neurons and ERK-dependent forms of pain hypersensitivity are absent in Kv4.2(-/-) mice compared to wild-type littermates. Finally, mutational analysis of Kv4.2 indicates that S616 is the functionally relevant ERK phosphorylation site for modulation of Kv4.2-mediated currents in neurons. These results show that Kv4.2 is a downstream target of ERK in spinal cord and plays a crucial role in pain plasticity.


The Journal of Neuroscience | 2007

Activation of the Extracellular Signal-Regulated Kinase in the Amygdala Modulates Pain Perception

Yarimar Carrasquillo; Robert W. Gereau

The amygdala has been proposed to serve as a neural center for the modulation of pain perception. Numerous anatomical and behavioral studies demonstrate that exogenous manipulations of the amygdala (i.e., lesions, drug infusions) modulate behavioral responses to acute noxious stimuli; however, little is known about the endogenous molecular changes in the amygdala that contribute to alterations in nociceptive processing during persistent noxious stimuli that resemble pathological pain conditions. In the present study, we demonstrate that endogenous molecular changes in the amygdala play a crucial role in modulating long-lasting peripheral hypersensitivity associated with persistent inflammation and we further identify the extracellular signal-regulated kinase (ERK) as a molecular substrate underlying this behavioral sensitization. Using the formalin test as a mouse model of persistent inflammatory pain, we show that activation of ERK in the amygdala is both necessary for and sufficient to induce long-lasting peripheral hypersensitivity to tactile stimulation. Thus, blockade of inflammation-induced ERK activation in the amygdala significantly reduced long-lasting peripheral hypersensitivity associated with persistent inflammation, and pharmacological activation of ERK in the amygdala induced peripheral hypersensitivity in the absence of inflammation. Importantly, blockade of ERK activation in the amygdala did not affect responses to acute noxious stimuli in the absence of inflammation, indicating that modulation of nociceptive responses by amygdala ERK activation is specific to the persistent inflammatory state. Altogether, our results demonstrate a functional role of the ERK signaling cascade in the amygdala in inflammation-induced peripheral hypersensitivity.


The Journal of Neuroscience | 2007

Metabotropic Glutamate Receptor 5 Modulates Nociceptive Plasticity via Extracellular Signal-Regulated Kinase–Kv4.2 Signaling in Spinal Cord Dorsal Horn Neurons

Huijuan Hu; Benedict J. Alter; Yarimar Carrasquillo; Chang-Sheng Qiu; Robert W. Gereau

Metabotropic glutamate receptors (mGluRs) play important roles in the modulation of nociception. The group I mGluRs (mGlu1 and mGlu5) modulate nociceptive plasticity via activation of extracellular signal-regulated kinase (ERK) signaling. We reported recently that the K+ channel Kv4.2 subunit underlies A-type K+ currents in the spinal cord dorsal horn and is modulated by the ERK signaling pathway. Kv4.2-mediated A-type currents are important determinants of dorsal horn neuronal excitability and central sensitization that underlies hypersensitivity after tissue injury. In the present study, we demonstrate that ERK-mediated phosphorylation of Kv4.2 is downstream of mGlu5 activation in spinal cord dorsal horn neurons. Activation of group I mGluRs inhibited Kv4.2-mediated A-type K+ currents and increased neuronal excitability in dorsal horn neurons. These effects were mediated by activation of mGlu5, but not mGlu1, and were dependent on ERK activation. Analysis of Kv4.2 phosphorylation site mutants clearly identified S616 as the residue responsible for mGlu5–ERK-dependent modulation of A-type currents and excitability. Furthermore, nociceptive behavior induced by activation of spinal group I mGluRs was impaired in Kv4.2 knock-out mice, demonstrating that, in vivo, modulation of Kv4.2 is downstream of mGlu5 activation. Altogether, our results indicate that activation of mGlu5 leads to ERK-mediated phosphorylation and modulation of Kv4.2-containing potassium channels in dorsal horn neurons. This modulation may contribute to nociceptive plasticity and central sensitization associated with chronic inflammatory pain conditions.


Molecular Pain | 2008

Hemispheric lateralization of a molecular signal for pain modulation in the amygdala

Yarimar Carrasquillo; Robert W. Gereau

The extracellular signal-regulated kinase (ERK) cascade has been shown to be a key modulator of pain processing in the central nucleus of the amygdala (CeA) in mice. ERK is activated in the CeA during persistent inflammatory pain and this activation is both necessary and sufficient to induce peripheral tactile hypersensitivity. Interestingly, biochemical studies show that inflammation-induced ERK activation in the CeA only occurs in the right, but not the left hemisphere. This inflammation-induced ERK activation in the right CeA is independent of the side of peripheral inflammation, suggesting that there is a dominant role of the right hemisphere in the modulation of pain by ERK activation in the CeA. However, the functional significance of this biochemical lateralization has yet to be determined. In the present study, we tested the hypothesis that modulation of pain by ERK signaling in the CeA is functionally lateralized. We acutely blocked ERK activation in the CeA by infusing the MEK inhibitor U0126 into the right or the left hemisphere and then measured the behavioral effects on inflammation-induced mechanical hypersensitivity in mice. Our results show that blockade of ERK activation in the right, but not the left CeA, decreases inflammation-induced peripheral hypersensitivity independent of the side of peripheral injury. These findings demonstrate that modulation of pain by ERK signaling in the CeA is functionally lateralized to the right hemisphere, suggesting a dominant role of the right amygdala in pain processing.


The Journal of Neuroscience | 2010

Activation of metabotropic glutamate receptor 5 in the amygdala modulates pain-like behavior

Benedict J. Kolber; Michael C. Montana; Yarimar Carrasquillo; Jian Xu; Stephen F. Heinemann; Louis J. Muglia; Robert W. Gereau

The central nucleus of the amygdala (CeA) has been identified as a site of nociceptive processing important for sensitization induced by peripheral injury. However, the cellular signaling components underlying this function remain unknown. Here, we identify metabotropic glutamate receptor 5 (mGluR5) as an integral component of nociceptive processing in the CeA. Pharmacological activation of mGluRs with (R,S)-3,5-dihydroxyphenylglycine (DHPG) in the CeA of mice is sufficient to induce peripheral hypersensitivity in the absence of injury. DHPG-induced peripheral hypersensitivity is reduced via pharmacological blockade of mGluR5 or genetic disruption of mGluR5. Furthermore, pharmacological blockade or conditional deletion of mGluR5 in the CeA abrogates inflammation-induced hypersensitivity, demonstrating the necessity of mGluR5 in CeA-mediated pain modulation. Moreover, we demonstrate that phosphorylation of extracellular-signal regulated kinase 1/2 (ERK1/2) is downstream of mGluR5 activation in the CeA and is necessary for the full expression of peripheral inflammation-induced behavioral sensitization. Finally, we present evidence of right hemispheric lateralization of mGluR5 modulation of amygdalar nociceptive processing. We demonstrate that unilateral pharmacological activation of mGluR5 in the CeA produces distinct behavioral responses depending on whether the right or left amygdala is injected. We also demonstrate significantly higher levels of mGluR5 expression in the right amygdala compared with the left under baseline conditions, suggesting a potential mechanism for right hemispheric lateralization of amygdala function in pain processing. Together, these results establish an integral role for mGluR5 and ERK1/2 in nociceptive processing in the CeA.


The Journal of Neuroscience | 2012

The sodium channel accessory subunit Navβ1 regulates neuronal excitability through modulation of repolarizing voltage-gated K+ channels

Céline Marionneau; Yarimar Carrasquillo; Aaron J. Norris; R. Reid Townsend; Lori L. Isom; Andrew J. Link; Jeanne M. Nerbonne

The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (IA) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting, and cell-surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na+ channel accessory subunit Navβ1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navβ1 decreases IA densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b-null cortical pyramidal neurons lacking Navβ1. Biochemical and voltage-clamp experiments further demonstrated that Navβ1 interacts with and increases the stability of the heterologously expressed Kv4.2 protein, resulting in greater total and cell-surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Together, the results presented here identify Navβ1 as a component of native neuronal Kv4.2-encoded IA channel complexes and a novel regulator of IA channel densities and neuronal excitability.


The Journal of Physiology | 2012

A-type K+ channels encoded by Kv4.2, Kv4.3 and Kv1.4 differentially regulate intrinsic excitability of cortical pyramidal neurons.

Yarimar Carrasquillo; Andreas Burkhalter; Jeanne M. Nerbonne

•  A‐type K+ currents, IA, are key determinants of neuronal excitability. Previous studies suggest critical roles for voltage‐gated K+ (Kv) channel pore‐forming (α) subunits of the Kv4 subfamily in the generation of neuronal IA channels. •  The experiments here examined directly the functional roles of Kv4.2, Kv4.3 and Kv1.4 in the regulation of the intrinsic excitability and the firing properties of mature cortical pyramidal (CP) neurons. •  The results demonstrate roles for Kv4.2, Kv4.3 and Kv1.4 in the generation of IA channels and show that Kv4.2‐, Kv4.3‐ and Kv1.4‐encoded IA channels play distinct roles in regulating the intrinsic excitability and the firing properties of CP neurons. •  These findings demonstrate previously unappreciated molecular and functional diversity of IA in central neurons, insights that will contribute importantly to future studies focused on determining the mechanisms underlying the alterations in neuronal excitability in epilepsy and other neurological disorders.


The Journal of Neuroscience | 2013

Distinct Balance of Excitation and Inhibition in an Interareal Feedforward and Feedback Circuit of Mouse Visual Cortex

Weiguo Yang; Yarimar Carrasquillo; Bryan M. Hooks; Jeanne M. Nerbonne; Andreas Burkhalter

Mouse visual cortex is subdivided into multiple distinct, hierarchically organized areas that are interconnected through feedforward (FF) and feedback (FB) pathways. The principal synaptic targets of FF and FB axons that reciprocally interconnect primary visual cortex (V1) with the higher lateromedial extrastriate area (LM) are pyramidal cells (Pyr) and parvalbumin (PV)-expressing GABAergic interneurons. Recordings in slices of mouse visual cortex have shown that layer 2/3 Pyr cells receive excitatory monosynaptic FF and FB inputs, which are opposed by disynaptic inhibition. Most notably, inhibition is stronger in the FF than FB pathway, suggesting pathway-specific organization of feedforward inhibition (FFI). To explore the hypothesis that this difference is due to diverse pathway-specific strengths of the inputs to PV neurons we have performed subcellular Channelrhodopsin-2-assisted circuit mapping in slices of mouse visual cortex. Whole-cell patch-clamp recordings were obtained from retrobead-labeled FFV1→LM- and FBLM→V1-projecting Pyr cells, as well as from tdTomato-expressing PV neurons. The results show that the FFV1→LM pathway provides on average 3.7-fold stronger depolarizing input to layer 2/3 inhibitory PV neurons than to neighboring excitatory Pyr cells. In the FBLM→V1 pathway, depolarizing inputs to layer 2/3 PV neurons and Pyr cells were balanced. Balanced inputs were also found in the FFV1→LM pathway to layer 5 PV neurons and Pyr cells, whereas FBLM→V1 inputs to layer 5 were biased toward Pyr cells. The findings indicate that FFI in FFV1→LM and FBLM→V1 circuits are organized in a pathway- and lamina-specific fashion.


The Journal of Neuroscience | 2015

Intracellular FGF14 (iFGF14) Is Required for Spontaneous and Evoked Firing in Cerebellar Purkinje Neurons and for Motor Coordination and Balance

Marie K. Bosch; Yarimar Carrasquillo; Joseph L. Ransdell; Ajay Kanakamedala; David M. Ornitz; Jeanne M. Nerbonne

Mutations in FGF14, which encodes intracellular fibroblast growth factor 14 (iFGF14), have been linked to spinocerebellar ataxia (SCA27). In addition, mice lacking Fgf14 (Fgf14−/−) exhibit an ataxia phenotype resembling SCA27, accompanied by marked changes in the excitability of cerebellar granule and Purkinje neurons. It is not known, however, whether these phenotypes result from defects in neuronal development or if they reflect a physiological requirement for iFGF14 in the adult cerebellum. Here, we demonstrate that the acute and selective Fgf14-targeted short hairpin RNA (shRNA)-mediated in vivo “knock-down” of iFGF14 in adult Purkinje neurons attenuates spontaneous and evoked action potential firing without measurably affecting the expression or localization of voltage-gated Na+ (Nav) channels at Purkinje neuron axon initial segments. The selective shRNA-mediated in vivo “knock-down” of iFGF14 in adult Purkinje neurons also impairs motor coordination and balance. Repetitive firing can be restored in Fgf14-targeted shRNA-expressing Purkinje neurons, as well as in Fgf14−/− Purkinje neurons, by prior membrane hyperpolarization, suggesting that the iFGF14-mediated regulation of the excitability of mature Purkinje neurons depends on membrane potential. Further experiments revealed that the loss of iFGF14 results in a marked hyperpolarizing shift in the voltage dependence of steady-state inactivation of the Nav currents in adult Purkinje neurons. We also show here that expressing iFGF14 selectively in adult Fgf14−/− Purkinje neurons rescues spontaneous firing and improves motor performance. Together, these results demonstrate that iFGF14 is required for spontaneous and evoked action potential firing in adult Purkinje neurons, thereby controlling the output of these cells and the regulation of motor coordination and balance.


The Journal of Neuroscience | 2012

IA Channels Encoded by Kv1.4 and Kv4.2 Regulate Neuronal Firing in the Suprachiasmatic Nucleus and Circadian Rhythms in Locomotor Activity

Daniel Granados-Fuentes; Aaron J. Norris; Yarimar Carrasquillo; Jeanne M. Nerbonne; Erik D. Herzog

Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (IA) voltage-gated K+ (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4−/−), Kv4.2 (Kv4.2−/−), or Kv4.3 (Kv4.3−/−), the pore-forming (α) subunits of IA channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4−/− and Kv4.2−/− SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3−/− mice and firing in Kv4.3−/− SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded IA channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.

Collaboration


Dive into the Yarimar Carrasquillo's collaboration.

Top Co-Authors

Avatar

Jeanne M. Nerbonne

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert W. Gereau

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Erik D. Herzog

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Aaron J. Norris

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Andreas Burkhalter

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Daniel Granados-Fuentes

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ajay Kanakamedala

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge