Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yawara Kawano is active.

Publication


Featured researches published by Yawara Kawano.


Immunological Reviews | 2015

Targeting the bone marrow microenvironment in multiple myeloma

Yawara Kawano; Michele Moschetta; Salomon Manier; Siobhan Glavey; Gullu Gorgun; Aldo M. Roccaro; Kenneth C. Anderson; Irene M. Ghobrial

Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, MM is still a fatal malignancy. This is mainly due to the supportive role of the BM microenvironment in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM microenvironment is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a non‐cellular compartment. In this review, we discuss the interaction between the malignant plasma cell and the BM microenvironment and the strategy to target them.


British Journal of Cancer | 2013

PDK1 inhibition is a novel therapeutic target in multiple myeloma

Shiho Fujiwara; Yawara Kawano; Hiromichi Yuki; Yutaka Okuno; Kisato Nosaka; Hiroaki Mitsuya; Hiroyuki Hata

Background:Cancer cells utilise the glycolytic pathway even when adequate oxygen is present, a phenomenon known as the Warburg effect. We examined whether this system is operative in multiple myeloma (MM) cells and whether glycolysis inhibition is a potential therapeutic modality.Methods:The MM cells were purified from 59 patients using CD138-immunomagnetic beads. The expression levels of genes associated with glycolysis, c-MYC, GLUT1, LDHA, HIF1A and pyruvate dehydrogenase kinase-1 (PDK1) were determined by real-time PCR. Glucose consumption and lactate production by MM cell lines were analysed. Oxamate, an LDH inhibitor, and dichloroacetate (DCA), a PDK1 inhibitor, were employed. Inhibition of PDK1 expression was achieved using a siRNA.Results:High LDHA expression was found to be an indicator of poor prognosis. It was also positively correlated with the expression of PDK1, c-MYC and GLUT1. Greater glucose consumption and lactate production in MM cells was associated with higher LDHA expression. All the glycolysis inhibitors (oxamate, DCA and PDK1 siRNA) induced apoptosis in MM cells. DCA combined with bortezomib showed additive cytotoxic effects.Conclusion:The present data suggest that the Warburg effect is operative in MM cells. As PDK1 is not overexpressed in normal tissues, PDK1 inhibition could serve as a novel therapeutic approach.


Cell Reports | 2015

CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal transition-like transcriptional activation

Aldo M. Roccaro; Yuji Mishima; Antonio Sacco; Michele Moschetta; Yu-Tzu Tai; Jiantao Shi; Yong Zhang; Michaela R. Reagan; Daisy Huynh; Yawara Kawano; Ilyas Sahin; Marco Chiarini; Salomon Manier; Michele Cea; Yosra Aljawai; Siobhan Glavey; Elizabeth A. Morgan; Chin Pan; Franziska Michor; Pina M. Cardarelli; Michelle Kuhne; Irene M. Ghobrial

Extra-medullary disease (EMD) in multiple myeloma (MM) is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM)- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT) transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.


International Journal of Oncology | 2012

Multiple myeloma cells expressing low levels of CD138 have an immature phenotype and reduced sensitivity to lenalidomide

Yawara Kawano; Shiho Fujiwara; Naoko Wada; Mikiko Izaki; Hiromichi Yuki; Yutaka Okuno; Ken-ichi Iyama; Hiroshi Yamasaki; Akira Sakai; Hiroaki Mitsuya; Hiroyuki Hata

CD138 expression is a hallmark of plasma cells and multiple myeloma cells. However, decreased expression of CD138 is frequently observed in plasma cells of myeloma patients, although the clinical significance of this is unclear. To evaluate the significance of low expression of CD138 in MM, we examined the phenotypes of MM cells expressing low levels of CD138. Flow cytometric analysis of primary MM cells revealed a significant decrease in CD138 expression in patients with relapsed/progressive disease compared with untreated MM patients. Patients with low levels of CD138 had a worse overall survival compared with patients with high levels of CD138, in newly diagnosed patients and patients receiving high-dose chemotherapy followed by autologous stem-cell transplantation. Two MM cell lines, KYMM-1 (CD138− low) and KYMM-2 (CD138− high), were established from a single MM patient with decreased CD138 expression. High expression of BCL6 and PAX5, and downregulation of IRF4, PRDM1 and XBP1 was observed in KYMM-1 compared with KYMM-2 cells, indicative of the immature phenotype of KYMM-1. KYMM-1 was less sensitive to lenalidomide than KYMM-2, while no difference in sensitivity to bortezomib was observed. KYMM-2 cells were further divided in CD138+ and CD138− fractions using anti-CD138-coated magnetic beads. CD138− cells sorted from the KYMM-2 cell line also showed high BCL6, low IRF4 expression and decreased sensitivity to lenalidomide compared with CD138+ cells. Our observations suggest that low CD138 expression relates to i) poor prognosis, ii) immature phenotype and iii) low sensitivity to lenalidomide. The observed distinct characteristics of CD138 low MM cells, suggest this should be recognized as a new clinical entity. Establishment of a treatment strategy for MM cells expressing low levels of CD138 is needed to improve their poor outcome.


International Journal of Oncology | 2015

Shikonin, dually functions as a proteasome inhibitor and a necroptosis inducer in multiple myeloma cells

Naoko Wada; Yawara Kawano; Shiho Fujiwara; Yoshitaka Kikukawa; Yutaka Okuno; Masayoshi Tasaki; Mitsuharu Ueda; Yukio Ando; Kazuya Yoshinaga; Masaki Ri; Shinsuke Iida; Takayuki Nakashima; Yukimasa Shiotsu; Hiroaki Mitsuya; Hiroyuki Hata

Shikonin (SHK), a natural small agent (MW 288.3), reportedly induces cell death in various tumor cells. We have found that SHK also exerts potent cytocidal effects on human multiple myeloma (MM) cells, but its anticancer mechanism in MM cells remains to be elucidated. SHK at 2.5–5 μM induced apoptosis in seven MM cell lines, including the bortezomib-resistant cell line KMS11/BTZ. The IC50 value of SHK against KMS11/BTZ was comparable to that of a parental cell line KMS11 (1.1 and 1.56 μM, respectively). SHK induces accumulation of ubiquitinated proteins and activates XBP-1 in MM cells, suggesting that SHK functions as a proteasome inhibitor, eventually inducing ER stress-associated apoptosis. SHK increases levels of HSP70/72, which protects cells from apoptosis, and exerts greater cytocidal effects in combination with the HSP70/72 inhibitor VER-155008. At higher concentrations (10–20 μM), SHK induced cell death, which was completely inhibited by a necroptosis inhibitor, necrostatin-1 (Nec-1), while the cytocidal activity was unaffected by Z-VAD-FMK, strongly suggesting that cell death is induced by SHK at high concentrations through necroptosis. The present data show for the first time that SHK induces cell death in MM cells. SHK efficiently induces apoptosis and combination of heat shock protein inhibitor with low dose SHK enhances apoptosis, while high dose SHK induces necroptosis in MM cells. These findings together support the use of SHK as a potential therapeutic agent for MM.


International Journal of Oncology | 2013

Hypoxia reduces CD138 expression and induces an immature and stem cell-like transcriptional program in myeloma cells

Yawara Kawano; Yoshitaka Kikukawa; Shiho Fujiwara; Naoko Wada; Yutaka Okuno; Hiroaki Mitsuya; Hiroyuki Hata

Although CD138 expression is a hallmark of plasma cells and myeloma cells, reduced CD138 expression is occasionally found. However, the mechanisms underlying CD138 downregulation in myeloma cells remain unclear. Previous reports suggest that the bone marrow microenvironment may contribute to CD138 downregulation. Among various factors in the tumor microenvironment, hypoxia is associated with tumor progression, poor clinical outcomes, dedifferentiation and the formation of cancer stem cell niches in solid tumors. Since recent findings showed that progression of multiple myeloma (MM) delivers hypoxia within the bone marrow, we hypothesized that CD138 expression may be regulated by hypoxia. In the present study, we examined whether the expression of CD138 and transcription factors occurred in myeloma cells under hypoxic conditions. MM cell lines (KMS-12BM and RPMI 8226) were cultured under normoxic or hypoxic conditions for up to 30 days. Changes in the phenotype and the expression of surface antigens and transcription factors were analyzed using flow cytometry, RT-PCR and western blotting. All-trans retinoic acid (ATRA) was used to examine the phenotypic changes under hypoxic conditions. The expression levels of CD138, CS1 and plasma cell-specific transcription factors decreased under hypoxic conditions, while those of CD20, CXCR4 and B cell-specific transcription factors increased compared with those under normoxic conditions. Stem cell-specific transcription factors were upregulated under hypoxic conditions, while no difference was observed in ALDH activity. The reduced CD138 expression under hypoxic conditions recovered when cells were treated with ATRA, even under hypoxic conditions, along with decreases in the expression of stem cell-specific transcription factor. Interestingly, ATRA treatment sensitized MM cells to bortezomib under hypoxia. We propose that hypoxia induces immature and stem cell-like transcription phenotypes in myeloma cells. Taken together with our previous observation that decreased CD138 expression is correlated with disease progression, the present data suggest that a hypoxic microenvironment affects the phenotype of MM cells, which may correlate with disease progression.


Blood | 2013

PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells

Hiromichi Yuki; Shikiko Ueno; Hiro Tatetsu; Hiroaki Niiro; Tadafumi Iino; Shinya Endo; Yawara Kawano; Yoshihiro Komohara; Motohiro Takeya; Hiroyuki Hata; Seiji Okada; Toshiki Watanabe; Koichi Akashi; Hiroaki Mitsuya; Yutaka Okuno

PU.1 has previously been shown to be down-regulated in classical Hodgkin lymphoma (cHL) cells via promoter methylation. We performed bisulfite sequencing and proved that the promoter region and the -17 kb upstream regulatory element of the PU.1 gene were highly methylated. To evaluate whether down-regulation of PU.1 is essential for the growth of cHL cells, we conditionally expressed PU.1 in 2 cHL cell lines, L428 and KM-H2. Overexpression of PU.1 induced complete growth arrest and apoptosis in both cell lines. Furthermore, in a Hodgkin lymphoma tumor xenograft model using L428 and KM-H2 cell lines, overexpression of PU.1 led to tumor regression or stable disease. Lentiviral transduction of PU.1 into primary cHL cells also induced apoptosis. DNA microarray analysis revealed that among genes related to cell cycle and apoptosis, p21 (CDKN1A) was highly up-regulated in L428 cells after PU.1 induction. Stable knockdown of p21 rescued PU.1-induced growth arrest in L428 cells, suggesting that the growth arrest and apoptosis observed are at least partially dependent on p21 up-regulation. These data strongly suggest that PU.1 is a potent tumor suppressor in cHL and that induction of PU.1 with demethylation agents and/or histone deacetylase inhibitors is worth exploring as a possible therapeutic option for patients with cHL.


Leukemia | 2016

Targeting vasculogenesis to prevent progression in multiple myeloma

Michele Moschetta; Yuji Mishima; Yawara Kawano; Salomon Manier; Bruno Paiva; L Palomera; Yosra Aljawai; Arianna Calcinotto; C Unitt; Ilyas Sahin; Antonio Sacco; Siobhan Glavey; Jiantao Shi; Michaela R. Reagan; Felipe Prosper; M Bellone; Marta Chesi; Leif Bergsagel; Angelo Vacca; Aldo M. Roccaro; Irene M. Ghobrial

The role of endothelial progenitor cell (EPC)-mediated vasculogenesis in hematological malignancies is not well explored. Here, we showed that EPCs are mobilized from the bone marrow (BM) to the peripheral blood at early stages of multiple myeloma (MM); and recruited to MM cell-colonized BM niches. Using EPC-defective ID1+/− ID3−/− mice, we found that MM tumor progression is dependent on EPC trafficking. By performing RNA-sequencing studies, we confirmed that endothelial cells can enhance proliferation and favor cell-cycle progression only in MM clones that are smoldering-like and have dependency on endothelial cells for tumor growth. We further confirmed that angiogenic dependency occurs early and not late during tumor progression in MM. By using a VEGFR2 antibody with anti-vasculogenic activity, we demonstrated that early targeting of EPCs delays tumor progression, while using the same agent at late stages of tumor progression is ineffective. Thus, although there is significant angiogenesis in myeloma, the dependency of the tumor cells on EPCs and vasculogenesis may actually precede this step. Manipulating vasculogenesis at an early stage of disease may be examined in clinical trials in patients with smoldering MM, and other hematological malignancies with precursor conditions.


Oncology Reports | 2011

TRAIL produced from multiple myeloma cells is associated with osteolytic markers

Yawara Kawano; Shikiko Ueno; Masahiro Abe; Yoshitaka Kikukawa; Hiromichi Yuki; Ken-ichi Iyama; Yutaka Okuno; Hiroaki Mitsuya; Hiroyuki Hata

Skeletal complications represent major clinical problems in multiple myeloma (MM). MM cells are known to induce differentiation of osteoclasts and inhibit osteoblasts. Receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) are key molecules for osteoclastogenesis. Although OPG interacts with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), the contribution of TRAIL to skeletal-related events (SRE) remains a matter of debate. In the present study, we examined the role of TRAIL in MM bone lesions. Myeloma cells were purified from 56 MM patients by CD138-immunomagnetic beads. TRAIL, DKK-1 and MIP1α RNA expression in purified MM cells was analyzed by real-time PCR. Immunohistochemistry of TRAIL was performed on paraffin-embedded plasmacytoma tissue sections. The concentration of TRAIL in the serum and bone marrow plasma from MM patients was analyzed by ELISA. TRAIL expression was significantly higher in MM cells than in plasma cells from patients with monoclonal gammopathy of undetermined significance (MGUS). TRAIL staining was detected in the cytoplasm of myeloma cells. TRAIL expression in MM cells correlated with bone marrow plasma TRAIL concentration. TRAIL expression had a positive correlation with osteolytic markers, such as serum calcium and urinary deoxypyridinoline. These results suggest that TRAIL, produced from myeloma cells, may play an important role in bone resorption of MM patients. Inhibition of this pathway may lead to development of a new therapeutic approach preventing bone resorption in MM.


Blood | 2016

Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia.

Aldo M. Roccaro; Antonio Sacco; Jiantao Shi; Marco Chiarini; Adriana Perilla-Glen; Salomon Manier; Siobhan Glavey; Yosra Aljawai; Yuji Mishima; Yawara Kawano; Michele Moschetta; Mick Correll; Ma. Reina Improgo; Jennifer R. Brown; Luisa Imberti; Giuseppe Rossi; Jorge J. Castillo; Steven P. Treon; Matthew L. Freedman; Eliezer M. Van Allen; Winston Hide; Elaine Hiller; Irene Rainville; Irene M. Ghobrial

Familial aggregation of Waldenström macroglobulinemia (WM) cases, and the clustering of B-cell lymphoproliferative disorders among first-degree relatives of WM patients, has been reported. Nevertheless, the possible contribution of inherited susceptibility to familial WM remains unrevealed. We performed whole exome sequencing on germ line DNA obtained from 4 family members in which coinheritance for WM was documented in 3 of them, and screened additional independent 246 cases by using gene-specific mutation sequencing. Among the shared germ line variants, LAPTM5(c403t) and HCLS1(g496a) were the most recurrent, being present in 3/3 affected members of the index family, detected in 8% of the unrelated familial cases, and present in 0.5% of the nonfamilial cases and in <0.05 of a control population. LAPTM5 and HCLS1 appeared as relevant WM candidate genes that characterized familial WM individuals and were also functionally relevant to the tumor clone. These findings highlight potentially novel contributors for the genetic predisposition to familial WM and indicate that LAPTM5(c403t) and HCLS1(g496a) may represent predisposition alleles in patients with familial WM.

Collaboration


Dive into the Yawara Kawano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge