Yinan Wei
University of Kentucky
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yinan Wei.
Protein Science | 2004
Michael H. Hecht; Aditi Das; Abigail Go; Luke H. Bradley; Yinan Wei
Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins with interesting and important activities. Randomly generated sequences, however, rarely fold into well‐ordered proteinlike structures. To enhance the quality of a library, features of rational design must be used to focus sequence diversity into those regions of sequence space that are most likely to yield folded structures. This review describes how focused libraries can be constructed by designing the binary pattern of polar and nonpolar amino acids to favor proteins that contain abundant secondary structure, while simultaneously burying hydrophobic side chains and exposing hydrophilic side chains to solvent. The “binary code” for protein design was used to construct several libraries of de novo proteins, including both α‐helical and β‐sheet structures. The recently determined solution structure of a binary patterned four‐helix bundle is well ordered, thereby demonstrating that sequences that have neither been selected by evolution (in vivo or in vitro) nor designed by computer can form nativelike proteins. Examples are presented demonstrating how binary patterned libraries have successfully produced well‐ordered structures, cofactor binding, catalytic activity, self‐assembled monolayers, amyloid‐like nanofibrils, and protein‐based biomaterials.
Protein Science | 2003
Yinan Wei; Tun Liu; Stephen L. Sazinsky; David A. Moffet; István Pelczer; Michael H. Hecht
Binary patterning of polar and nonpolar amino acids has been used as the key design feature for constructing large combinatorial libraries of de novo proteins. Each position in a binary patterned sequence is designed explicitly to be either polar or nonpolar; however, the precise identities of these amino acids are varied extensively. The combinatorial underpinnings of the “binary code” strategy preclude explicit design of particular side chains at specified positions. Therefore, packing interactions cannot be specified a priori. To assess whether the binary code strategy can nonetheless produce well‐folded de novo proteins, we constructed a second‐generation library based upon a new structural scaffold designed to fold into 102‐residue four‐helix bundles. Characterization of five proteins chosen arbitrarily from this new library revealed that (1) all are α‐helical and quite stable; (2) four of the five contain an abundance of tertiary interactions indicative of well‐ordered structures; and (3) one protein forms a well‐folded structure with native‐like features. The proteins from this new 102‐residue library are substantially more stable and dramatically more native‐like than those from an earlier binary patterned library of 74‐residue sequences. These findings demonstrate that chain length is a crucial determinant of structural order in libraries of de novo four‐helix bundles. Moreover, these results show that the binary code strategy—if applied to an appropriately designed structural scaffold—can generate large collections of stably folded and/or native‐like proteins.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Yinan Wei; Seho Kim; David Fela; Jean Baum; Michael H. Hecht
Combinatorial libraries of de novo amino acid sequences can provide a rich source of diversity for the discovery of novel proteins. Randomly generated sequences, however, rarely fold into well ordered protein-like structures. To enhance the quality of a library, diversity must be focused into those regions of sequence space most likely to yield well folded structures. We have constructed focused libraries of de novo sequences by designing the binary pattern of polar and nonpolar amino acids to favor structures that contain abundant secondary structure, while simultaneously burying hydrophobic side chains in the protein interior and exposing hydrophilic side chains to solvent. Because binary patterning specifies only the polar/nonpolar periodicity, but not the identities of the side chains, detailed structural features, including packing interactions, cannot be designed a priori. Can binary patterned libraries nonetheless encode well folded proteins? An unambiguous answer to this question requires determination of a 3D structure. We used NMR spectroscopy to determine the structure of S-824, a novel protein from a recently constructed library of 102-residue sequences. This library is “naïve” in that it has not been subjected to high-throughput screens or directed evolution. The experimentally determined structure of S-824 is a four-helix bundle, as specified by the design. As dictated by the binary-code strategy, nonpolar side chains are buried in the protein interior, and polar side chains are exposed to solvent. The polypeptide backbone and buried side chains are well ordered, demonstrating that S-824 is not a molten globule and forms a unique structure. These results show that amino acid sequences that have neither been selected by evolution, nor designed by computer, nor isolated by high-throughput screening, can form native-like structures. These findings validate the binary-code strategy as an effective method for producing vast collections of well folded de novo proteins.
Environmental Health Perspectives | 2013
Nicki A. Baker; Michael Karounos; Victoria L. English; Jun Fang; Yinan Wei; Arnold J. Stromberg; Manjula Sunkara; Andrew J. Morris; Hollie I. Swanson; Lisa A. Cassis
Background: Previous studies demonstrated that coplanar polychlorinated biphenyls (PCBs) promote proinflammatory gene expression in adipocytes. PCBs are highly lipophilic and accumulate in adipose tissue, a site of insulin resistance in persons with type 2 diabetes. Objectives: We investigated the in vitro and in vivo effects of coplanar PCBs on adipose expression of tumor necrosis factor α (TNF-α) and on glucose and insulin homeostasis in lean and obese mice. Methods: We quantified glucose and insulin tolerance, as well as TNF-α levels, in liver, muscle, and adipose tissue of male C57BL/6 mice administered vehicle, PCB-77, or PCB-126 and fed a low fat (LF) diet. Another group of mice administered vehicle or PCB-77 were fed a high fat (HF) diet for 12 weeks; the diet was then switched from HF to LF for 4 weeks to induce weight loss. We quantified glucose and insulin tolerance and adipose TNF-α expression in these mice. In addition, we used in vitro and in vivo studies to quantify aryl hydrocarbon receptor (AhR)-dependent effects of PCB-77 on parameters of glucose homeostasis. Results: Treatment with coplanar PCBs resulted in sustained impairment of glucose and insulin tolerance in mice fed the LF diet. In PCB-77–treated mice, TNF-α expression was increased in adipose tissue but not in liver or muscle. PCB-77 levels were strikingly higher in adipose tissue than in liver or serum. Antagonism of AhR abolished both in vitro and in vivo effects of PCB-77. In obese mice, PCB-77 had no effect on glucose homeostasis, but glucose homeostasis was impaired after weight loss. Conclusions: Coplanar PCBs impaired glucose homeostasis in lean mice and in obese mice following weight loss. Adipose-specific elevations in TNF-α expression by PCBs may contribute to impaired glucose homeostasis.
Optics Express | 2007
J. T. Hastings; Jing Guo; P. D. Keathley; P. B. Kumaresh; Yinan Wei; Stacy A. Law; Leonidas G. Bachas
Dual-mode surface-plasmon resonance (SPR) sensors use both long- and short- range surface plasmon waves to differentiate surface binding interactions from interfering bulk effects. We have optimized the design of these sensors for minimum surface limit of detection (LOD) using a Cramer-Rao lower bound for spectral shift estimation. Despite trade-offs between resonance width, minimum reflectivity, and sensitivity for the two modes, a range of reasonable design parameters provides nearly optimal performance. Experimental verification using biotin-streptavidin binding as a model system reveals that sensitivity and LOD for dual-mode sensors remains competitive with single-mode sensors while compensating for bulk effects.
Proteins | 2004
John L. Klepeis; Yinan Wei; Michael H. Hecht; Christodoulos A. Floudas
Ab initio structure prediction and de novo protein design are two problems at the forefront of research in the fields of structural biology and chemistry. The goal of ab initio structure prediction of proteins is to correctly characterize the 3D structure of a protein using only the amino acid sequence as input. De novo protein design involves the production of novel protein sequences that adopt a desired fold. In this work, the results of a double‐blind study are presented in which a new ab initio method was successfully used to predict the 3D structure of a protein designed through an experimental approach using binary patterned combinatorial libraries of de novo sequences. The predicted structure, which was produced before the experimental structure was known and without consideration of the design goals, and the final NMR analysis both characterize this protein as a 4‐helix bundle. The similarity of these structures is evidenced by both small RMSD values between the coordinates of the two structures and a detailed analysis of the helical packing. Proteins 2005.
Journal of Molecular Biology | 2011
Wei Lu; Meng Zhong; Yinan Wei
AcrB and its homologues are major players in the efflux of anti-microbials out of Gram-negative bacteria. The structural and functional unit of AcrB is a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains elusive. It is not clear if an individual subunit folds into a monomeric form first followed by association (three-stage pathway) or if association occurs simultaneously with subunit folding (two-stage pathway). To answer this question, we investigated the feasibility of creating a folded monomeric AcrB mutant. The existence of well-folded monomers in the cell membrane would be an evidence of a three-stage pathway. A monomeric AcrB mutant, AcrB(Δloop), was created through the truncation of a protruding loop that appeared to contribute to the stability of an AcrB trimer. AcrB(Δloop) expressed at a level similar to that of wild-type AcrB. The secondary structure content and tertiary conformation of AcrB(Δloop) were very similar to those of wild-type AcrB. However, when expressed in an acrB-deficient strain, AcrB(Δloop) failed to complement its defect in drug efflux. Results from blue native polyacrylamide gel electrophoresis and chemical cross-linking experiments suggested that AcrB(Δloop) existed as a monomer. The expression of this monomeric mutant in a wild-type Escherichia coli strain did not have a significant dominant-negative effect, suggesting that the mutant could not effectively co-assemble with genomic AcrB. AcrB(Δloop) is the first monomeric mutant reported for the intrinsically trimeric AcrB. The structural characterization results of this mutant suggest that the oligomerization of AcrB occurs through a three-stage pathway involving folded monomers.
ACS Nano | 2012
Leslie D. Knecht; Nur Ali; Yinan Wei; J. Zach Hilt; Sylvia Daunert
Nanomaterials have found numerous applications as tunable, remotely controlled platforms for drug delivery, hyperthermia cancer treatment, and various other biomedical applications. The basis for the interest lies in their unique properties achieved at the nanoscale that can be accessed via remote stimuli. These properties could then be exploited to simultaneously activate secondary systems that are not remotely actuatable. In this work, iron oxide nanoparticles are encapsulated in a bisacrylamide cross-linked polyacrylamide hydrogel network along with a model dehalogenase enzyme, L-2-HAD(ST). This thermophilic enzyme is activated at elevated temperatures and has been shown to have optimal activity at 70 °C. By exposing the Fe(3)O(4) nanoparticles to a remote stimulus, an alternating magnetic field (AMF), enhanced system heating can be achieved, thus remotely activating the enzyme. The internal heating of the nanocomposite hydrogel network in the AMF results in a 2-fold increase in enzymatic activity as compared to the same hydrogel heated externally in a water bath, suggesting that the internal heating of the nanoparticles is more efficient than the diffusion-limited heating of the water bath. This system may prove useful for remote actuation of biomedical and environmentally relevant enzymes and find applications in a variety of fields.
PLOS ONE | 2011
Linliang Yu; Wei Lu; Yinan Wei
The multidrug transporter AcrB in Escherichia coli exists and functions as a homo-trimer. The assembly process of obligate membrane protein oligomers, including AcrB, remains poorly understood. In a previous study, we have shown that individual AcrB subunit is capable of folding independently, suggesting that trimerization of AcrB follows a three-stage pathway in which monomers first fold, and then assemble. Here we destabilized the AcrB trimer through mutating a single Pro (P223) in the protruding loop of AcrB, which drastically reduced the protein activity. We replaced P223 separately with five residues, including Ala, Val, Tyr, Asn, and Gly, and found that AcrBP223G was the least active. Detailed characterization of AcrBP223G revealed that the protein existed as a well-folded monomer after purification, but formed a trimer in vivo. The function of the mutant could be partly restored through strengthening the stability of the trimer using an inter-subunit disulfide bond. Our results also suggested that the protruding loop is well structured during AcrB assembly with P223 served as a “wedge” close to the tip to stabilize the AcrB trimer structure. When this wedge is disrupted, the stability of the trimer is reduced, accompanied by a decrease of drug efflux activity.
Protein and Peptide Letters | 2011
Wei Lu; Meng Zhong; Yinan Wei
AcrB is an inner membrane protein in Escherichia coli that is a component of a triplex AcrA-AcrB-TolC (AcrAB-TolC) multidrug efflux pump. The AcrAB-TolC complex and its homologues are highly conserved among Gram-negative bacteria and are major players in conferring multidrug resistance (MDR) in many pathogens. In this study we developed a disulfide trapping method that may reveal AcrB conformational changes under the native condition in the cell membrane. Specifically, we created seven disulfide bond pairs in the periplasmic domain of AcrB, which can be used as probes to determine local conformational changes. We have developed a rigorous protocol to measure the extent of disulfide bond formation in membrane proteins under the native condition. The rigorousness of the method was verified through examining the extent of disulfide bond formation in Cys pairs separated by different distances. The blocking-reducing-labeling scheme combined with fluorescence labeling made the current method convenient, reliable, and quantitative.