Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yosra Aljawai is active.

Publication


Featured researches published by Yosra Aljawai.


Blood | 2014

C1013G/CXCR4 acts as a driver mutation of tumor progression and modulator of drug resistance in lymphoplasmacytic lymphoma

Aldo M. Roccaro; Antonio Sacco; Cristina Jiménez; Patricia Maiso; Michele Moschetta; Yuji Mishima; Yosra Aljawai; Ilyas Sahin; Michelle Kuhne; Pina M. Cardarelli; Lewis J. Cohen; Jesús F. San Miguel; Ramón García-Sanz; Irene M. Ghobrial

The C-X-C chemokine receptor type 4 (CXCR4) plays a crucial role in modulating cell trafficking in hematopoietic stem cells and clonal B cells. We screened 418 patients with B-cell lymphoproliferative disorders and described the presence of the C1013G/CXCR4 warts, hypogammaglobulinemia, infections, and myelokathexis-associated mutation in 28.2% (37/131) of patients with lymphoplasmacytic lymphoma (Waldenström macroglobulinemia [WM]), being either absent or present in only 7% of other B-cell lymphomas. In vivo functional characterization demonstrates its activating role in WM cells, as demonstrated by significant tumor proliferation and dissemination to extramedullary organs, leading to disease progression and decreased survival. The use of a monoclonal antibody anti-CXCR4 led to significant tumor reduction in a C1013G/CXCR4 WM model, whereas drug resistance was observed in mutated WM cells exposed to Brutons tyrosine kinase, mammalian target of rapamycin, and phosphatidylinositol 3-kinase inhibitors, but not proteasome inhibitors. These findings demonstrate that C1013G/CXCR4 is an activating mutation in WM and support its role as a critical regulator of WM molecular pathogenesis and as an important therapeutic target.


Cancer Research | 2015

Metabolic Signature Identifies Novel Targets for Drug Resistance in Multiple Myeloma

Patricia Maiso; Daisy Huynh; Michele Moschetta; Antonio Sacco; Yosra Aljawai; Yuji Mishima; John M. Asara; Aldo M. Roccaro; Alec C. Kimmelman; Irene M. Ghobrial

Drug resistance remains a major clinical challenge for cancer treatment. Multiple myeloma is an incurable plasma cell cancer selectively localized in the bone marrow. The main cause of resistance in myeloma is the minimal residual disease cells that are resistant to the original therapy, including bortezomib treatment and high-dose melphalan in stem cell transplant. In this study, we demonstrate that altered tumor cell metabolism is essential for the regulation of drug resistance in multiple myeloma cells. We show the unprecedented role of the metabolic phenotype in inducing drug resistance through LDHA and HIF1A in multiple myeloma, and that specific inhibition of LDHA and HIF1A can restore sensitivity to therapeutic agents such as bortezomib and can also inhibit tumor growth induced by altered metabolism. Knockdown of LDHA can restore sensitivity of bortezomib resistance cell lines while gain-of-function studies using LDHA or HIF1A induced resistance in bortezomib-sensitive cell lines. Taken together, these data suggest that HIF1A and LDHA are important targets for hypoxia-driven drug resistance. Novel drugs that regulate metabolic pathways in multiple myeloma, specifically targeting LDHA, can be beneficial to inhibit tumor growth and overcome drug resistance.


Blood | 2014

Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model

Michaela R. Reagan; Yuji Mishima; Siobhan Glavey; Yong Zhang; Salomon Manier; Zhi Ning Lu; Masoumeh Memarzadeh; Yu Zhang; Antonio Sacco; Yosra Aljawai; Jiantao Shi; Yu-Tzu Tai; John E. Ready; David L. Kaplan; Aldo M. Roccaro; Irene M. Ghobrial

Clonal proliferation of plasma cells within the bone marrow (BM) affects local cells, such as mesenchymal stromal cells (MSCs), leading to osteolysis and fatality in multiple myeloma (MM). Consequently, there is an urgent need to find better mechanisms of inhibiting myeloma growth and osteolytic lesion development. To meet this need and accelerate clinical translation, better models of myeloma within the BM are required. Herein we have developed a clinically relevant, three-dimensional (3D) myeloma BM coculture model that mimics bone cell/cancer cell interactions within the bone microenvironment. The coculture model and clinical samples were used to investigate myeloma growth, osteogenesis inhibition, and myeloma-induced abnormalities in MM-MSCs. This platform demonstrated myeloma support of capillary-like assembly of endothelial cells and cell adhesion-mediated drug resistance (CAM-DR). Also, distinct normal donor (ND)- and MM-MSC miRNA (miR) signatures were identified and used to uncover osteogenic miRs of interest for osteoblast differentiation. More broadly, our 3D platform provides a simple, clinically relevant tool to model cancer growth within the bone-useful for investigating skeletal cancer biology, screening compounds, and exploring osteogenesis. Our identification and efficacy validation of novel bone anabolic miRs in MM opens more opportunities for novel approaches to cancer therapy via stromal miR modulation.


Cell Reports | 2015

CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal transition-like transcriptional activation

Aldo M. Roccaro; Yuji Mishima; Antonio Sacco; Michele Moschetta; Yu-Tzu Tai; Jiantao Shi; Yong Zhang; Michaela R. Reagan; Daisy Huynh; Yawara Kawano; Ilyas Sahin; Marco Chiarini; Salomon Manier; Michele Cea; Yosra Aljawai; Siobhan Glavey; Elizabeth A. Morgan; Chin Pan; Franziska Michor; Pina M. Cardarelli; Michelle Kuhne; Irene M. Ghobrial

Extra-medullary disease (EMD) in multiple myeloma (MM) is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM)- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT) transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.


Blood | 2014

Pyk2 promotes tumor progression in multiple myeloma.

Yu Zhang; Michele Moschetta; Daisy Huynh; Yu-Tzu Tai; Yong Zhang; Wenjing Zhang; Yuji Mishima; Jennifer E. Ring; Winnie F. Tam; Qunli Xu; Patricia Maiso; Michaela R. Reagan; Ilyas Sahin; Antonio Sacco; Salomon Manier; Yosra Aljawai; Siobhan Glavey; Nikhil C. Munshi; Kenneth C. Anderson; Jonathan A. Pachter; Aldo M. Roccaro; Irene M. Ghobrial

Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family that has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) biology and disease progression remains unexplored. We first demonstrated that patients with MM present with higher expression of Pyk2 compared with healthy individuals. By using loss-of-function approaches, we found that Pyk2 inhibition led to reduction of MM tumor growth in vivo as well as decreased cell proliferation, cell-cycle progression, and adhesion ability in vitro. In turn, overexpression of Pyk2 promoted the malignant phenotype, substantiated by enhanced tumor growth and reduced survival. Mechanistically, inhibition of Pyk2 reduced activation of Wnt/β-catenin signaling by destabilizing β-catenin, leading to downregulation of c-Myc and Cyclin D1. Furthermore, treatment of MM cells with the FAK/Pyk2 inhibitor VS-4718 effectively inhibited MM cell growth both in vitro and in vivo. Collectively, our findings describe the tumor-promoting role of Pyk2 in MM, thus providing molecular evidence for a novel tyrosine kinase inhibitor as a new therapeutic option in MM.


British Journal of Haematology | 2015

Incidence and clinical features of extramedullary multiple myeloma in patients who underwent stem cell transplantation.

Mathew Weinstock; Yosra Aljawai; Elizabeth A. Morgan; Jacob P. Laubach; Muriel Gannon; Aldo M. Roccaro; Cindy Varga; Constantine S. Mitsiades; Claudia Paba-Prada; Robert Schlossman; Nikhil C. Munshi; Kenneth C. Anderson; Paul P. Richardson; Edie Weller; Irene M. Ghobrial

Extramedullary disease (EMD), defined as an infiltrate of clonal plasma cells at an anatomic site distant from the bone marrow, is an uncommon manifestation of multiple myeloma. Six hundred and sixty‐three consecutive patients with multiple myeloma who underwent stem cell transplantation between January 2005 and December 2011 were assessed for the presence of EMD. A cohort of 55 patients with biopsy‐proven EMD was identified, comprising 8·3% of the total study population. EMD was present at the time of diagnosis in 14·5% of cases and at the time of relapse in 76% of patients. The most common EMD presentations at relapse were liver involvement and pleural effusions. EMD specimens had high expression of CD44 (92%) and moderate expression of CXCR4. The median overall survival from time of myeloma diagnosis was 4·1 years (95% CI: 3·1, 5·1) and the median overall survival from time of EMD diagnosis was 1·3 years (95% CI: 0·8, 2·3). This report demonstrates that the incidence of EMD has not increased with the introduction of novel agents and stem cell transplantation. The most common EMD presentations in the relapsed setting were liver and pleural fluid. The presence of CD44 and CXCR4 expression may represent new markers of EMD that warrant further investigation.


Leukemia | 2016

Targeting vasculogenesis to prevent progression in multiple myeloma

Michele Moschetta; Yuji Mishima; Yawara Kawano; Salomon Manier; Bruno Paiva; L Palomera; Yosra Aljawai; Arianna Calcinotto; C Unitt; Ilyas Sahin; Antonio Sacco; Siobhan Glavey; Jiantao Shi; Michaela R. Reagan; Felipe Prosper; M Bellone; Marta Chesi; Leif Bergsagel; Angelo Vacca; Aldo M. Roccaro; Irene M. Ghobrial

The role of endothelial progenitor cell (EPC)-mediated vasculogenesis in hematological malignancies is not well explored. Here, we showed that EPCs are mobilized from the bone marrow (BM) to the peripheral blood at early stages of multiple myeloma (MM); and recruited to MM cell-colonized BM niches. Using EPC-defective ID1+/− ID3−/− mice, we found that MM tumor progression is dependent on EPC trafficking. By performing RNA-sequencing studies, we confirmed that endothelial cells can enhance proliferation and favor cell-cycle progression only in MM clones that are smoldering-like and have dependency on endothelial cells for tumor growth. We further confirmed that angiogenic dependency occurs early and not late during tumor progression in MM. By using a VEGFR2 antibody with anti-vasculogenic activity, we demonstrated that early targeting of EPCs delays tumor progression, while using the same agent at late stages of tumor progression is ineffective. Thus, although there is significant angiogenesis in myeloma, the dependency of the tumor cells on EPCs and vasculogenesis may actually precede this step. Manipulating vasculogenesis at an early stage of disease may be examined in clinical trials in patients with smoldering MM, and other hematological malignancies with precursor conditions.


Blood | 2016

Exome sequencing reveals recurrent germ line variants in patients with familial Waldenström macroglobulinemia.

Aldo M. Roccaro; Antonio Sacco; Jiantao Shi; Marco Chiarini; Adriana Perilla-Glen; Salomon Manier; Siobhan Glavey; Yosra Aljawai; Yuji Mishima; Yawara Kawano; Michele Moschetta; Mick Correll; Ma. Reina Improgo; Jennifer R. Brown; Luisa Imberti; Giuseppe Rossi; Jorge J. Castillo; Steven P. Treon; Matthew L. Freedman; Eliezer M. Van Allen; Winston Hide; Elaine Hiller; Irene Rainville; Irene M. Ghobrial

Familial aggregation of Waldenström macroglobulinemia (WM) cases, and the clustering of B-cell lymphoproliferative disorders among first-degree relatives of WM patients, has been reported. Nevertheless, the possible contribution of inherited susceptibility to familial WM remains unrevealed. We performed whole exome sequencing on germ line DNA obtained from 4 family members in which coinheritance for WM was documented in 3 of them, and screened additional independent 246 cases by using gene-specific mutation sequencing. Among the shared germ line variants, LAPTM5(c403t) and HCLS1(g496a) were the most recurrent, being present in 3/3 affected members of the index family, detected in 8% of the unrelated familial cases, and present in 0.5% of the nonfamilial cases and in <0.05 of a control population. LAPTM5 and HCLS1 appeared as relevant WM candidate genes that characterized familial WM individuals and were also functionally relevant to the tumor clone. These findings highlight potentially novel contributors for the genetic predisposition to familial WM and indicate that LAPTM5(c403t) and HCLS1(g496a) may represent predisposition alleles in patients with familial WM.


American Journal of Hematology | 2015

Extramedullary Waldenström macroglobulinemia.

Ranjit Banwait; Yosra Aljawai; Joseph Cappuccio; Serena McDiarmid; Elizabeth A. Morgan; Houry Leblebjian; Aldo M. Roccaro; Jacob P. Laubach; Jorge J. Castillo; Claudia Paba-Prada; Steven P. Treon; Robert Redd; Edie Weller; Irene M. Ghobrial

Disease assessment in Waldenstrom Macroglobulinemia (WM) is dependent on the percent involvement of B‐cell neoplasm in the bone marrow and IgM paraprotein in the serum. A subset of patients also demonstrates extramedullary involvement, which is infrequently examined. The role of extramedullary involvement in the diagnosis and prognosis of WM is poorly understood. The purpose of this study is to report the characteristics of WM patients with extramedullary disease (EMD). Nine hundred and eight‐five patients with WM were evaluated at one academic center and the presence of EMD was assessed in these patients. Forty‐three (4.4%) patients were identified to have EMD. Nine (21%) patients presented with involvement at WM diagnosis, while 34 (79%) developed EMD post‐therapy for WM. Most frequent EMD sites involved were pulmonary (30%), soft tissue (21%), cerebrospinal fluid (23%), renal (8%), and bone (9%). The median overall survival at 10 years was 79% (95% CI: 57–90%). This is the first study to describe the clinical characteristics, response and overall survival in patients with extramedullary WM. Further studies to define the molecular characteristics of this entity and mechanisms of its development are warranted. Am. J. Hematol. 90:100–104, 2015.


Cancer Research | 2015

Abstract PR14: In vivo targeting of stromal-derived factor-1 as a strategy to prevent myeloma cell dissemination to distant bone marrow niches

Aldo M. Roccaro; Antonio Sacco; Michele Moschetta; Patricia Maiso; Yuji Mishima; Yosra Aljawai; Fabio Facchetti; Anna Kruschinski; Giuseppe Rossi; Irene M. Ghobrial

Background. Multiple myeloma (MM) patients present with multiple lytic lesions at diagnosis, indicating the presence of continuous dissemination of MM cells from the primary site of tumor development to multiple distant bone marrow (BM) niches. We hypothesized that stromal-derived factor-1 (SDF1) may represent a target for preventing transition from MGUS (micrometastatic-stage) to active-MM (macrometastatic-stage). We therefore evaluated SDF1 expression in the BM of patients with MGUS, MM, compared to healthy individuals; and tested NOX-A12, a high affinity L-oligonucleotide binder to SDF1, looking at its ability to modulate MM cell tumor growth and homing to the BM in vivo and in vitro. Methods. SDF1 levels were evaluated by immunohistochemistry on BM specimens of patients with MGUS, active-MM, or healthy individuals; and confirmed by ELISA, using conditioned-medium of BM-mesenchymal stromal cells (BM-MSCs) from MGUS, active-MM and healthy individuals. BM metastatic lesions from primary epithelial tumors were also evaluated. Co-localization of SDF1 with MM cell (MM.1S-GFP + )-enriched BM niches was evaluated using in vivo confocal microscopy. Effect of NOX-A12 on modulating MM cell dissemination was tested in vivo, by using in vivo MM metastasis model. In vivo homing and in vivo tumor growth of MM cells (MM.1S-GFP + /luc + ) was assessed by using in vivo confocal microscopy and bioluminescence, in mice treated with 1) vehicle; 2) NOX-A12; 3) bortezomib; 4) NOX-A12+bortezomib. Effects of drug combination on dissemination of MM cells to distant BM niches was evaluated ex vivo by immunofluorescence on explanted femurs. DNA synthesis and adhesion of MM cells in the context of NOX-A12 treated primary MM BM-MSCs in presence or absence of bortezomib were tested by thymidine uptake and adhesion in vitro assay, respectively. Synergism was calculated by using CalcuSyn software. Results. Patients with active-MM present with higher BM SDF1 expression vs MGUS patients and healthy individuals. Similarly, BM presenting with metastasis from epithelial primary tumors had higher SDF1 levels compared to healthy subjects, thus suggesting the importance of SDF1 in favoring tumor cell metastasis to BM niches. SDF1 co-localized at BM level with MM tumor cells in vivo. In vitro, NOX-A12 induced a dose-dependent de-adhesion of MM cells from the BMSCs supported by inhibition of BM-MSC-mediated phosphorylation of ERK1/2 and cofilin. Importantly, NOX-A12 induced MM cell mobilization from the BM to the peripheral blood (PB) as shown ex vivo by reduction of MM cells in the BM and increased number of MM cells within the PB compared to control mice (P Conclusion. SDF-1 represents a valid target for inhibiting MM cell dissemination to distant BM niches, thus providing the evidence for using the SDF1 inhibiting spiegelmer NOX-A12 to target MM cells at the stage of micrometastasis (MGUS), thus preventing development of macrometastatic MM. This abstract is also presented as Poster B80. Citation Format: Aldo M. Roccaro, Antonio Sacco, Michele Moschetta, Patricia Maiso, Yuji Mishima, Yosra Aljawai, Fabio Facchetti, Anna Kruschinski, Giuseppe Rossi, Irene M. Ghobrial. In vivo targeting of stromal-derived factor-1 as a strategy to prevent myeloma cell dissemination to distant bone marrow niches. [abstract]. In: Abstracts: AACR Special Conference on Cellular Heterogeneity in the Tumor Microenvironment; 2014 Feb 26-Mar 1; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2015;75(1 Suppl):Abstract nr PR14. doi:10.1158/1538-7445.CHTME14-PR14

Collaboration


Dive into the Yosra Aljawai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge