Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yusuke Sotomaru is active.

Publication


Featured researches published by Yusuke Sotomaru.


Nature | 2009

Generation of transgenic non-human primates with germline transmission

Erika Sasaki; Hiroshi Suemizu; Akiko Shimada; Kisaburo Hanazawa; Ryo Oiwa; Michiko Kamioka; Ikuo Tomioka; Yusuke Sotomaru; Reiko Hirakawa; Tomoo Eto; Seiji Shiozawa; Takuji Maeda; Mamoru Ito; Ryoji Ito; Chika Kito; Chie Yagihashi; Kenji Kawai; Hiroyuki Miyoshi; Yoshikuni Tanioka; Norikazu Tamaoki; Sonoko Habu; Hideyuki Okano; Tatsuji Nomura

The common marmoset (Callithrix jacchus) is increasingly attractive for use as a non-human primate animal model in biomedical research. It has a relatively high reproduction rate for a primate, making it potentially suitable for transgenic modification. Although several attempts have been made to produce non-human transgenic primates, transgene expression in the somatic tissues of live infants has not been demonstrated by objective analyses such as polymerase chain reaction with reverse transcription or western blots. Here we show that the injection of a self-inactivating lentiviral vector in sucrose solution into marmoset embryos results in transgenic common marmosets that expressed the transgene in several organs. Notably, we achieved germline transmission of the transgene, and the transgenic offspring developed normally. The successful creation of transgenic marmosets provides a new animal model for human disease that has the great advantage of a close genetic relationship with humans. This model will be valuable to many fields of biomedical research.


PLOS Genetics | 2012

Contribution of Intragenic DNA Methylation in Mouse Gametic DNA Methylomes to Establish Oocyte-Specific Heritable Marks

Hisato Kobayashi; Takayuki Sakurai; Misaki Imai; Nozomi Takahashi; Atsushi Fukuda; Obata Yayoi; Shun Sato; Kazuhiko Nakabayashi; Kenichiro Hata; Yusuke Sotomaru; Yutaka Suzuki; Tomohiro Kono

Genome-wide dynamic changes in DNA methylation are indispensable for germline development and genomic imprinting in mammals. Here, we report single-base resolution DNA methylome and transcriptome maps of mouse germ cells, generated using whole-genome shotgun bisulfite sequencing and cDNA sequencing (mRNA-seq). Oocyte genomes showed a significant positive correlation between mRNA transcript levels and methylation of the transcribed region. Sperm genomes had nearly complete coverage of methylation, except in the CpG-rich regions, and showed a significant negative correlation between gene expression and promoter methylation. Thus, these methylome maps revealed that oocytes and sperms are widely different in the extent and distribution of DNA methylation. Furthermore, a comparison of oocyte and sperm methylomes identified more than 1,600 CpG islands differentially methylated in oocytes and sperm (germline differentially methylated regions, gDMRs), in addition to the known imprinting control regions (ICRs). About half of these differentially methylated DNA sequences appear to be at least partially resistant to the global DNA demethylation that occurs during preimplantation development. In the absence of Dnmt3L, neither methylation of most oocyte-methylated gDMRs nor intragenic methylation was observed. There was also genome-wide hypomethylation, and partial methylation at particular retrotransposons, while maintaining global gene expression, in oocytes. Along with the identification of the many Dnmt3L-dependent gDMRs at intragenic regions, the present results suggest that oocyte methylation can be divided into 2 types: Dnmt3L-dependent methylation, which is required for maternal methylation imprinting, and Dnmt3L-independent methylation, which might be essential for endogenous retroviral DNA silencing. The present data provide entirely new perspectives on the evaluation of epigenetic markers in germline cells.


Nature Immunology | 2004

Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo

Katsuto Hozumi; Naoko Negishi; Daisuke Suzuki; Natsumi Abe; Yusuke Sotomaru; Norikazu Tamaoki; Carolina Mailhos; David Ish-Horowicz; Sonoko Habu; Michael J. Owen

Notch receptors and their ligands contribute to many developmental systems, but it is not apparent how they function after birth, as their null mutants develop severe defects during embryogenesis. Here we used the Cre-loxP system to delete the Delta-like 1 gene (Dll1) after birth and demonstrated the complete disappearance of splenic marginal zone B cells in Dll1-null mice. In contrast, T cell development was unaffected. These results demonstrated that Dll1 was dispensable as a ligand for Notch1 at the branch point of T cell–B cell development but was essential for the generation of marginal zone B cells. Thus, Notch signaling is essential for lymphocyte development in vivo, but there is a redundancy of Notch-Notch ligand signaling that can drive T cell development within the thymus.


Human Molecular Genetics | 2009

Deletion of Gtl2 , imprinted non-coding RNA, with its differentially methylated region induces lethal parent-origin-dependent defects in mice

Nozomi Takahashi; Akira Okamoto; Ryota Kobayashi; Motomu Shirai; Yayoi Obata; Hidehiko Ogawa; Yusuke Sotomaru; Tomohiro Kono

The cluster of imprinted genes located in the Dlk1-Dio3 domain spanning 1 Mb plays an essential role in controlling pre- and postnatal growth and differentiation in mice and humans. The failure of parent-of-origin-dependent gene expression in this domain results in grave disorders, leading to death in some cases. However, little is known about the role of maternally expressed non-coding RNAs (ncRNAs) including many miRNAs and snoRNAs in this domain. In order to further understand the role of these ncRNAs, we created Gtl2-mutant mice harboring a 10 kb deletion in exons 1-5. The mutant mice exhibited a very unique inheritance mode: when the deletion was inherited from the mother (Mat-KO), the pups were born with normal phenotypes; however, all of them died within 4 weeks after birth, probably due to severely hypoplastic pulmonary alveoli and hepatocellular necrosis. Mice carrying the paternal deletion (Pat-KO) showed severe growth retardation and perinatal lethality. Interestingly, the homozygous mutants (Homo-KO) survived and developed into fertile adults. Our results show that these phenotypes occur due to altered expression of the Dlk1-Dio3 cluster genes including miRNAs and snoRNAs via the cis and trans effects.


The EMBO Journal | 2006

Comprehensive analysis of myeloid lineage conversion using mice expressing an inducible form of C/EBPα

Yumi Fukuchi; Fumi Shibata; Miyuki Ito; Yuko Goto-Koshino; Yusuke Sotomaru; Mamoru Ito; Toshio Kitamura; Hideaki Nakajima

CCAAT/enhancer‐binding protein (C/EBP) α is a critical regulator for early myeloid differentiation. Although C/EBPα has been shown to convert B cells into myeloid lineage, precise roles of C/EBPα in various hematopoietic progenitors and stem cells still remain obscure. To examine the consequence of C/EBPα activation in various progenitors and to address the underlying mechanism of lineage conversion in detail, we established transgenic mice expressing a conditional form of C/EBPα. Using these mice, we show that megakaryocyte/erythroid progenitors (MEPs) and common lymphoid progenitors (CLPs) could be redirected to functional macrophages in vitro by a short‐term activation of C/EBPα, and the conversion occurred clonally through biphenotypic intermediate cells. Moreover, in vivo activation of C/EBPα in mice led to the increase of mature granulocytes and myeloid progenitors with a concomitant decrease of hematopoietic stem cells and nonmyeloid progenitors. Our study reveals that C/EBPα can activate the latent myeloid differentiation program of MEP and CLP and shows that its global activation affects multilineage homeostasis in vivo.


Journal of Biological Chemistry | 2002

Unregulated expression of the imprinted genes H19 and Igf2r in mouse uniparental fetuses.

Yusuke Sotomaru; Yukiko Katsuzawa; Izuho Hatada; Yayoi Obata; Hiroyuki Sasaki; Tomohiro Kono

The present study shows that the H19and Igf2r genes, which are imprinted and expressed solely from maternal alleles, are expressed in an unregulatable manner in mouse uniparental, androgenetic, and parthenogenetic fetuses at day 9.5 of gestation. In the androgenetic fetuses, theH19 and Igf2r genes were respectively expressed at 12 and 40% of the levels in biparental fetuses. In addition, the expression of both genes was excessive (1259 and 482%, respectively) in the parthenotes. These expressions of the imprinted genes were not regulated by methylation in the regulatory regions. Moreover, the expression of the antisense Igf2r RNA (Air) was also excessive and was not correlated withIgf2r gene expression in the uniparental fetuses. Taken together, these results indicate that the parental specific expression of imprinted genes is not maintained in particular genes in uniparental embryos, which in turn suggests that both parental genomes are required to establish maternal specific expression of theH19 and Igf2r genes by trans-acting mechanisms.


Theriogenology | 1994

EFFECT OF OOPLAST ACTIVATION ON THE DEVELOPMENT OF OOCYTES FOLLOWING NUCLEUS TRANSFER IN CATTLE

Tomohiro Kono; Yusuke Sotomaru; Fumihito Aono; T. Takahasi; I. Ogiwara; F. Sekizawa; T. Arai; T. Nakahara

We assessed the effect of ooplast (enucleated oocytes) activation prior to receiving a donor nucleus on the development of nucleus transferred oocytes in cattle. The ooplasts were activated by electric stimulus at 30, 33, 36 and 39 h after being placed in culture medium for meiotic maturation. The activated ooplasts were further cultured in vitro, for a total 42 h from the beginning of maturation, 16- to 32-cell stage embryos produced by in vitro fertilization were used as donor embryos. The nucleus transferred oocytes were co-cultured with bovine oviductal epithelial cells in vitro. The fusion rate was not different between the activated (90%) and aged (94%) ooplasts 42 h after culture. Activated ooplasts receiving a donor nucleus showed a higher developmental rate than the aged ooplasts. Maximal development of the oocytes was obtained if the ooplast was activated at 9 h prior to receiving a donor nucleus. Thirty-nine percent developed to morulae and 24% to blastocysts. This compares (P<0.01) with 13% of the aged ooplasts developing to morulae and 8% to blastocysts. Of the activated ooplasts at 3, 6 and 12 h prior to fusion with a donor blastomere, 12, 16 and 13% developed to blastocysts, respectively. Of the 17 recipient cows receiving nucleus transferred embryos, 9 (53%) were diagnosed pregnant by palpation per rectum examination, and 3 normal offspring were obtained.


Genomics | 2009

Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2

Hisato Kobayashi; Kaori Yamada; Shinnosuke Morita; Hitoshi Hiura; Atsushi Fukuda; Masayo Kagami; Tsutomu Ogata; Kenichiro Hata; Yusuke Sotomaru; Tomohiro Kono

In mammals, both the maternal and paternal genomes are necessary for normal embryogenesis due to parent-specific epigenetic modification of the genome during gametogenesis, which leads to non-equivalent expression of imprinted genes from the maternal and paternal alleles. In this study, we identified a paternally expressed imprinted gene, Zdbf2, by microarray-based screening using parthenogenetic and normal embryos. Expression analyses showed that Zdbf2 was paternally expressed in various embryonic and adult tissues, except for the placenta and adult testis, which showed biallelic expression of the gene. We also identified a differentially methylated region (DMR) at 10 kb upstream of exon 1 of the Zdbf2 gene and this differential methylation was derived from the germline. Furthermore, we also identified that the human homolog (ZDBF2) of the mouse Zdbf2 gene showed paternal allele-specific expression in human lymphocytes but not in the human placenta. Thus, our findings defined mouse chromosome 1 and human chromosome 2 as the loci for imprinted genes.


PLOS ONE | 2010

Identification of Inappropriately Reprogrammed Genes by Large-Scale Transcriptome Analysis of Individual Cloned Mouse Blastocysts

Atsushi Fukuda; Feng Cao; Shinnosuke Morita; Kaori Yamada; Yuko Jincho; Shouji Tane; Yusuke Sotomaru; Tomohiro Kono

Although cloned embryos generated by somatic/embryonic stem cell nuclear transfer (SECNT) certainly give rise to viable individuals, they can often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. In an effort to gain further insights into reprogramming and the properties of SECNT embryos, we performed a large-scale gene expression profiling of 87 single blastocysts using GeneChip microarrays. Sertoli cells, cumulus cells, and embryonic stem cells were used as donor cells. The gene expression profiles of 87 blastocysts were subjected to microarray analysis. Using principal component analysis and hierarchical clustering, the gene expression profiles were clearly classified into 3 clusters corresponding to the type of donor cell. The results revealed that each type of SECNT embryo had a unique gene expression profile that was strictly dependent upon the type of donor cells, although there was considerable variation among the individual profiles within each group. This suggests that the reprogramming process is distinct for embryos cloned from different types of donor cells. Furthermore, on the basis of the results of comparison analysis, we identified 35 genes that were inappropriately reprogrammed in most of the SECNT embryos; our findings demonstrated that some of these genes, such as Asz1, Xlr3a and App, were appropriately reprogrammed only in the embryos with a transcriptional profile that was the closest to that of the controls. Our findings provide a framework to further understand the reprogramming in SECNT embryos.


Biology of Reproduction | 2008

Identification of Genes Aberrantly Expressed in Mouse Embryonic Stem Cell-Cloned Blastocysts

Yuko Jincho; Yusuke Sotomaru; Manabu Kawahara; Yukiko Ono; Hidehiko Ogawa; Yayoi Obata; Tomohiro Kono

Abstract During development, cloned embryos often undergo embryonic arrest at any stage of embryogenesis, leading to diverse morphological abnormalities. The long-term effects resulting from embryo cloning procedures would manifest after birth as early death, obesity, various functional disorders, and so forth. Despite extensive studies, the parameters affecting the developmental features of cloned embryos remain unclear. The present study carried out extensive gene expression analysis to screen a cluster of genes aberrantly expressed in embryonic stem cell-cloned blastocysts. Differential screening of cDNA subtraction libraries revealed 224 differentially expressed genes in the cloned blastocysts: eighty-five were identified by the BLAST search as known genes performing a wide range of functions. To confirm their differential expression, quantitative gene expression analyses were performed by real-time PCR using single blastocysts. The genes Skp1a, Canx, Ctsd, Timd2, and Psmc6 were significantly up-regulated, whereas Aqp3, Ak3l1, Rhot1, Sf3b3, Nid1, mt-Rnr2, mt-Nd1, mt-Cytb, and mt-Co2 were significantly down-regulated in the majority of embryonic stem cell-cloned embryos. Our results suggest that an extraordinarily high frequency of multiple functional disorders caused by the aberrant expression of various genes in the blastocyst stage is involved in developmental arrest and various other disorders in cloned embryos.

Collaboration


Dive into the Yusuke Sotomaru's collaboration.

Top Co-Authors

Avatar

Tomohiro Kono

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Yayoi Obata

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Mamoru Ito

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar

Atsushi Fukuda

Tokyo University of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyoji Hioki

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge