Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elena Tenedini is active.

Publication


Featured researches published by Elena Tenedini.


Stem cell reports | 2016

No Identical "Mesenchymal Stem Cells" at Different Times and Sites: Human Committed Progenitors of Distinct Origin and Differentiation Potential Are Incorporated as Adventitial Cells in Microvessels

Benedetto Sacchetti; Alessia Funari; Cristina Remoli; Giuseppe Giannicola; Gesine Kögler; Stefanie Liedtke; Giulio Cossu; Marta Serafini; Maurilio Sampaolesi; Enrico Tagliafico; Elena Tenedini; Isabella Saggio; Pamela Gehron Robey; Mara Riminucci; Paolo Bianco

Summary A widely shared view reads that mesenchymal stem/stromal cells (“MSCs”) are ubiquitous in human connective tissues, can be defined by a common in vitro phenotype, share a skeletogenic potential as assessed by in vitro differentiation assays, and coincide with ubiquitous pericytes. Using stringent in vivo differentiation assays and transcriptome analysis, we show that human cell populations from different anatomical sources, regarded as “MSCs” based on these criteria and assumptions, actually differ widely in their transcriptomic signature and in vivo differentiation potential. In contrast, they share the capacity to guide the assembly of functional microvessels in vivo, regardless of their anatomical source, or in situ identity as perivascular or circulating cells. This analysis reveals that muscle pericytes, which are not spontaneously osteochondrogenic as previously claimed, may indeed coincide with an ectopic perivascular subset of committed myogenic cells similar to satellite cells. Cord blood-derived stromal cells, on the other hand, display the unique capacity to form cartilage in vivo spontaneously, in addition to an assayable osteogenic capacity. These data suggest the need to revise current misconceptions on the origin and function of so-called “MSCs,” with important applicative implications. The data also support the view that rather than a uniform class of “MSCs,” different mesoderm derivatives include distinct classes of tissue-specific committed progenitors, possibly of different developmental origin.


Blood | 2010

c-myb supports erythropoiesis through the transactivation of KLF1 and LMO2 expression

Elisa Bianchi; Roberta Zini; Simona Salati; Elena Tenedini; Ruggiero Norfo; Enrico Tagliafico; Rossella Manfredini; Sergio Ferrari

The c-myb transcription factor is highly expressed in immature hematopoietic cells and down-regulated during differentiation. To define its role during the hematopoietic lineage commitment, we silenced c-myb in human CD34(+) hematopoietic stem/progenitor cells. Noteworthy, c-myb silencing increased the commitment capacity toward the macrophage and megakaryocyte lineages, whereas erythroid differentiation was impaired, as demonstrated by clonogenic assay, morphologic and immunophenotypic data. Gene expression profiling and computational analysis of promoter regions of genes modulated in c-myb-silenced CD34(+) cells identified the transcription factors Kruppel-Like Factor 1 (KLF1) and LIM Domain Only 2 (LMO2) as putative targets, which can account for c-myb knockdown effects. Indeed, chromatin immunoprecipitation and luciferase reporter assay demonstrated that c-myb binds to KLF1 and LMO2 promoters and transactivates their expression. Consistently, the retroviral vector-mediated overexpression of either KLF1 or LMO2 partially rescued the defect in erythropoiesis caused by c-myb silencing, whereas only KLF1 was also able to repress the megakaryocyte differentiation enhanced in Myb-silenced CD34(+) cells. Our data collectively demonstrate that c-myb plays a pivotal role in human primary hematopoietic stem/progenitor cells lineage commitment, by enhancing erythropoiesis at the expense of megakaryocyte diffentiation. Indeed, we identified KLF1 and LMO2 transactivation as the molecular mechanism underlying Myb-driven erythroid versus megakaryocyte cell fate decision.


Blood | 2014

Impact of mutational status on outcomes in myelofibrosis patients treated with ruxolitinib in the COMFORT-II study.

Paola Guglielmelli; Flavia Biamonte; Giada Rotunno; Valentina Artusi; Lucia Artuso; Isabella Bernardis; Elena Tenedini; Lisa Pieri; Chiara Paoli; Carmela Mannarelli; Rajmonda Fjerza; Elisa Rumi; Viktoriya Stalbovskaya; Matthew Squires; Mario Cazzola; Rossella Manfredini; Claire N. Harrison; Enrico Tagliafico; Alessandro M. Vannucchi

The JAK1/JAK2 inhibitor ruxolitinib produced significant reductions in splenomegaly and symptomatic burden and improved survival in patients with myelofibrosis (MF), irrespective of their JAK2 mutation status, in 2 phase III studies against placebo (COMFORT-I) and best available therapy (COMFORT-II). We performed a comprehensive mutation analysis to evaluate the impact of 14 MF-associated mutations on clinical outcomes in 166 patients included in COMFORT-II. We found that responses in splenomegaly and symptoms, as well as the risk of developing ruxolitinib-associated anemia and thrombocytopenia, occurred at similar frequencies across different mutation profiles. Ruxolitinib improved survival independent of mutation profile and reduced the risk of death in patients harboring a set of prognostically detrimental mutations (ASXL1, EZH2, SRSF2, IDH1/2) with an hazard ratio of 0.57 (95% confidence interval: 0.30-1.08) vs best available therapy. These data indicate that clinical efficacy and survival improvement may occur across different molecular subsets of patients with MF treated with ruxolitinib.


Cell Death & Differentiation | 2006

Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells

Claudia Gemelli; Monica Montanari; Elena Tenedini; T Zanocco Marani; Tatiana Vignudelli; M Siena; Roberta Zini; Simona Salati; Enrico Tagliafico; Rossella Manfredini; Alexis Grande; Sergio Ferrari

Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.


Journal of Leukocyte Biology | 2002

Physiological levels of 1α, 25 dihydroxyvitamin D3 induce the monocytic commitment of CD34+ hematopoietic progenitors

Alexis Grande; Monica Montanari; Enrico Tagliafico; Rossella Manfredini; Tommaso Zanocco Marani; M Siena; Elena Tenedini; Andrea Gallinelli; Sergio Ferrari

Although supraphysiological levels of 1α, 25 dihydroxyvitamin D3 (VD) have been demonstrated extensively to induce the monomacrophagic differentiation of leukemic myelo‐ and monoblasts, little is known about the role that physiological levels of this vitamin could play in the regulation of normal hematopoiesis. To clarify this issue, we adopted a liquid‐culture model in which cord blood CD34+ hematopoietic progenitors, induced to differentiate in the presence of different combinations of cytokines, were exposed to VD at various concentrations and stimulation modalities. The data obtained show that physiological levels of VD promote a differentiation of CD34+ hematopoietic progenitors characterized by the induction of all the monomacrophagic immunophenotypic and morphological markers. This effect is not only exerted at the terminal maturation but also at the commitment level, as demonstrated by the decrease of highly undifferentiated CD34+CD38− hematopoietic stem cells, the down‐regulation of CD34 antigen, and the increase of monocyte‐committed progenitors. Molecular analysis suggests that the VD genomic signaling pathway underlies the described differentiation effects.


Stem Cells | 2005

The Kinetic Status of Hematopoietic Stem Cell Subpopulations Underlies a Differential Expression of Genes Involved in Self‐Renewal, Commitment, and Engraftment

Rossella Manfredini; Roberta Zini; Simona Salati; M Siena; Elena Tenedini; Enrico Tagliafico; Monica Montanari; Tommaso Zanocco-Marani; Claudia Gemelli; Tatiana Vignudelli; Alexis Grande; Miriam Fogli; Lara Rossi; Maria Elena Fagioli; Lucia Catani; Roberto M. Lemoli; Sergio Ferrari

The gene expression profile of CD34− hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage‐negative (Lin−) CD34−, Lin−CD34+, and Lin+CD34+ cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis. Moreover, the significant upregulation in CD34− cells of pathways inhibiting HSC proliferation induces a strong differential expression of cyclins, cyclin‐dependent kinases (CDKs), CDK inhibitors, and growth‐arrest genes. According to the expression of their receptors and transducers, interleukin (IL)‐10 and IL‐17 showed an inhibitory effect on the clonogenic activity of CD34− cells. Conversely, CD34+ cells were sensitive to the mitogenic stimulus of thrombopoietin. Furthermore, CD34− cells express preferentially genes related to neural, epithelial, and muscle differentiation. The analysis of transcription factor expression shows that the CD34 induction results in the upregulation of genes related to self‐renewal and lineage commitment. The preferential expression in CD34+ cells of genes supporting the HSC mobilization and homing to the bone marrow, such as chemokine receptors and integrins, gives the molecular basis for the higher engraftment capacity of CD34+ cells. Thus, the different kinetic status of CD34− and CD34+ cells, detailed by molecular and functional analysis, significantly influences their biological behavior.


Leukemia | 2014

Targeted cancer exome sequencing reveals recurrent mutations in myeloproliferative neoplasms

Elena Tenedini; Isabella Bernardis; Valentina Artusi; Lucia Artuso; Enrica Roncaglia; Paola Guglielmelli; Lisa Pieri; Costanza Bogani; Flavia Biamonte; Giada Rotunno; Carmela Mannarelli; Elisa Bianchi; Alessandro Pancrazzi; Tiziana Fanelli; G Malagoli Tagliazucchi; Sergio Ferrari; Rossella Manfredini; Alessandro M. Vannucchi; Enrico Tagliafico

With the intent of dissecting the molecular complexity of Philadelphia-negative myeloproliferative neoplasms (MPN), we designed a target enrichment panel to explore, using next-generation sequencing (NGS), the mutational status of an extensive list of 2000 cancer-associated genes and microRNAs. The genomic DNA of granulocytes and in vitro-expanded CD3+T-lymphocytes, as a germline control, was target-enriched and sequenced in a learning cohort of 20 MPN patients using Roche 454 technology. We identified 141 genuine somatic mutations, most of which were not previously described. To test the frequency of the identified variants, a larger validation cohort of 189 MPN patients was additionally screened for these mutations using Ion Torrent AmpliSeq NGS. Excluding the genes already described in MPN, for 8 genes (SCRIB, MIR662, BARD1, TCF12, FAT4, DAP3, POLG and NRAS), we demonstrated a mutation frequency between 3 and 8%. We also found that mutations at codon 12 of NRAS (NRASG12V and NRASG12D) were significantly associated, for primary myelofibrosis (PMF), with highest dynamic international prognostic scoring system (DIPSS)-plus score categories. This association was then confirmed in 66 additional PMF patients composing a final dataset of 168 PMF showing a NRAS mutation frequency of 4.7%, which was associated with a worse outcome, as defined by the DIPSS plus score.


Cell Cycle | 2006

Identification of new p63 targets in human keratinocytes.

Barbara Testoni; Serena Borrelli; Elena Tenedini; Daniela Alotto; Carlotta Castagnoli; Stefano Piccolo; Enrico Tagliafico; Sergio Ferrari; M. Alessandra Vigano; Roberto Mantovani

p63 is a transcription factor involved in the development of ectodermal tissues, including limb, skin and, in general, multilayered epithelia. We identified both activated and repressed genes in human keratinocytes via gene expression profiling of p63-depleted cells and validated 21 new primary targets by RT-PCR and ChIP location analysis. The p63 isoforms differentially activate or repress selected promoters. ChIPs in primary keratinocytes indicate that p63 targets are generally shared with p53, but some are p63-specific. Several growth suppressors are among repressed genes. The newly identified genes belong to pathways of growth and differentiation and are regulated in HaCaT differentiation and in stratification of human skin.


Stem Cells | 2006

Embryonic stem-derived versus somatic neural stem cells: A comparative analysis of their developmental potential and molecular phenotype

Elena Colombo; Serena G. Giannelli; Rossella Galli; Enrico Tagliafico; Chiara Foroni; Elena Tenedini; Sergio Ferrari; Stefano Ferrari; Giorgio Corte; Angelo L. Vescovi; Giulio Cossu; Vania Broccoli

Reliable procedures to induce neural commitment of totipotent undifferentiated embryonic stem (ES) cells have provided new tools for investigating the molecular mechanisms underlying cell fate choices. We extensively characterized the developmental potential of ES‐induced neural cells obtained using an adaptation of the multistep induction protocol. We provided evidence that ES‐derived neural proliferating cells are endowed with stem cell properties such as extensive self‐renewal capacity and single‐cell multipotency. In differentiating conditions, cells matured exclusively into neurons, astrocytes, and oligodendrocytes. All these features have been previously described in only somatic neural stem cells (NSCs). Therefore, we consider it more appropriate to rename our cells ES‐derived NSCs. These similarities between the two NSC populations induced us to carefully compare their proliferation ability and differentiation potential. Although they were very similar in overall behavior, we scored specific differences. For instance, ES‐derived NSCs proliferated at higher rate and consistently generated a higher number of neurons compared with somatic NSCs. To further investigate their relationships, we carried out a molecular analysis comparing their transcriptional profiles during proliferation. We observed a large fraction of shared expressed transcripts, including genes previously described to be critical in defining somatic NSC traits. Among the genes differently expressed, candidate genes possibly responsible for divergences between the two cell types were selected and further investigated. In particular, we showed that an enhanced MAPK (mitogen‐activated protein kinase) signaling is acting in ES‐induced NSCs, probably triggered by insulin‐like growth factor–II. This may contribute to the high proliferation rate exhibited by these cells in culture.


PLOS ONE | 2011

Expression Profiling of FSHD-1 and FSHD-2 Cells during Myogenic Differentiation Evidences Common and Distinctive Gene Dysregulation Patterns

Stefania Cheli; Stephanie François; Beatrice Bodega; Francesco Ferrari; Elena Tenedini; Enrica Roncaglia; Sergio Ferrari; Enrico Ginelli; Raffaella Meneveri

BACKGROUND Determine global gene dysregulation affecting 4q-linked (FSHD-1) and non 4q-linked (FSHD-2) cells during early stages of myogenic differentiation. This approach has been never applied to FSHD pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS By in vitro differentiation of FSHD-1 and FSHD-2 myoblasts and gene chip analysis we derived that gene expression profile is altered only in FSHD-1 myoblasts and FSHD-2 myotubes. The changes seen in FSHD-1 regarded a general defect in cell cycle progression, probably due to the upregulation of myogenic markers PAX3 and MYOD1, and a deficit of factors (SUV39H1 and HMGB2) involved in D4Z4 chromatin conformation. On the other hand, FSHD-2 mytubes were characterized by a general defect in RNA metabolism, protein synthesis and degradation and, to a lesser extent, in cell cycle. Common dysregulations regarded genes involved in response to oxidative stress and in sterol biosynthetic process. Interestingly, our results also suggest that miRNAs might be implied in both FSHD-1 and FSHD-2 gene dysregulation. Finally, in both cell differentiation systems, we did not observe a gradient of altered gene expression throughout the 4q35 chromosome. CONCLUSIONS/SIGNIFICANCE FSHD-1 and FSHD-2 cells showed, in different steps of myogenic differentiation, a global deregulation of gene expression rather than an alteration of expression of 4q35 specific genes. In general, FSHD-1 and FSHD-2 global gene deregulation interested common and distinctive biological processes. In this regard, defects of cell cycle progression (FSHD-1 and to a lesser extent FSHD-2), protein synthesis and degradation (FSHD-2), response to oxidative stress (FSHD-1 and FSHD-2), and cholesterol homeostasis (FSHD-1 and FSHD-2) may in general impair a correct myogenesis. Taken together our results recapitulate previously reported defects of FSHD-1, and add new insights into the gene deregulation characterizing both FSHD-1 and FSHD-2, in which miRNAs may play a role.

Collaboration


Dive into the Elena Tenedini's collaboration.

Top Co-Authors

Avatar

Enrico Tagliafico

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Sergio Ferrari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Rossella Manfredini

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Isabella Bernardis

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Alexis Grande

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Monica Montanari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Elisa Bianchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Claudia Gemelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberta Zini

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge