Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Peter Sandy is active.

Publication


Featured researches published by Peter Sandy.


Nature | 2009

Systematic RNA interference reveals that oncogenic KRAS -driven cancers require TBK1

David A. Barbie; Pablo Tamayo; Jesse S. Boehm; So Young Kim; Susan E. Moody; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Etienne Meylan; Claudia Scholl; Stefan Fröhling; Edmond M. Chan; Martin L. Sos; Kathrin Michel; Craig H. Mermel; Serena J. Silver; Barbara A. Weir; Jan H. Reiling; Qing Sheng; Piyush B. Gupta; Raymond C. Wadlow; Hanh Le; Ben S. Wittner; Sridhar Ramaswamy; David M. Livingston; David M. Sabatini; Matthew Meyerson; Roman K. Thomas; Eric S. Lander; Jill P. Mesirov

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-κB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Cancer Cell | 2009

AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer

Krishna Vasudevan; David A. Barbie; Michael A. Davies; Rosalia Rabinovsky; Chontelle McNear; Jessica Kim; Bryan T. Hennessy; Hsiuyi Tseng; Panisa Pochanard; So Young Kim; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Qing Sheng; Piyush B. Gupta; Jesse S. Boehm; Jan H. Reiling; Serena J. Silver; Yiling Lu; Katherine Stemke-Hale; Bhaskar Dutta; Corwin Joy; Aysegul A. Sahin; Ana M. Gonzalez-Angulo; Ana Lluch; Lucia E. Rameh; Tyler Jacks; David E. Root; Eric S. Lander; Gordon B. Mills

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.


BioTechniques | 2005

Mammalian RNAi: a practical guide

Peter Sandy; Andrea Ventura; Tyler Jacks

Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for the functional annotation of the Caenorhabditis elegans and Drosophila melanogaster genomes. Recent advances in the design and delivery of targeting molecules now permit efficient and highly specific gene silencing in mammalian systems as well. RNAi offers a simple, fast, and cost-effective alternative to existing gene targeting technologies both in cell-based and in vivo settings. Synthetic small interfering RNA (siRNA) and retroviral short hairpin RNA (shRNA) libraries targeting thousands of human and mouse genes are publicly available for high-throughput genetic screens, and knockdown animals can be rapidly generated by lentivirus-mediated transgenesis. RNAi also holds great promise as a novel therapeutic approach. This review provides insight into the current gene silencing techniques in mammalian systems.


ACS Medicinal Chemistry Letters | 2013

Discovery, Design, and Optimization of Isoxazole Azepine BET Inhibitors.

Victor S. Gehling; Michael C. Hewitt; Rishi G. Vaswani; Yves Leblanc; Alexandre Côté; Christopher G. Nasveschuk; Alexander M. Taylor; Jean-Christophe Harmange; James E. Audia; Eneida Pardo; Shivangi Joshi; Peter Sandy; Jennifer A. Mertz; Robert J. Sims; Louise Bergeron; Barbara M. Bryant; Steve Bellon; Florence Poy; Hariharan Jayaram; Ravichandran Sankaranarayanan; Sreegouri Yellapantula; Nandana Bangalore Srinivasamurthy; Swarnakumari Birudukota; Brian K. Albrecht

The identification of a novel series of small molecule BET inhibitors is described. Using crystallographic binding modes of an amino-isoxazole fragment and known BET inhibitors, a structure-based drug design effort lead to a novel isoxazole azepine scaffold. This scaffold showed good potency in biochemical and cellular assays and oral activity in an in vivo model of BET inhibition.


Molecular and Cellular Biology | 2011

Requirement of c-Jun NH2-Terminal Kinase for Ras-Initiated Tumor Formation

Cristina Arrigo Cellurale; Guadalupe Sabio; Norman J. Kennedy; Madhumita Das; Marissa Barlow; Peter Sandy; Tyler Jacks; Roger J. Davis

ABSTRACT The c-Jun NH2-terminal kinase (JNK) signal transduction pathway causes increased gene expression mediated, in part, by members of the activating transcription factor protein (AP1) group. JNK is therefore implicated in the regulation of cell growth and cancer. To test the role of JNK in Ras-induced tumor formation, we examined the effect of compound ablation of the ubiquitously expressed genes Jnk1 plus Jnk2. We report that JNK is required for Ras-induced transformation of p53-deficient primary cells in vitro. Moreover, JNK is required for lung tumor development caused by mutational activation of the endogenous KRas gene in vivo. Together, these data establish that JNK plays a key role in Ras-induced tumorigenesis.


eLife | 2016

Bromodomain inhibition of the transcriptional coactivators CBP/EP300 as a therapeutic strategy to target the IRF4 network in multiple myeloma

Andrew R. Conery; Richard C. Centore; Adrianne Neiss; Patricia J. Keller; Shivangi Joshi; Kerry L. Spillane; Peter Sandy; Charlie Hatton; Eneida Pardo; Laura Zawadzke; Archana Bommi-Reddy; Karen Gascoigne; Barbara M. Bryant; Jennifer A. Mertz; Robert J. Sims

Pharmacological inhibition of chromatin co-regulatory factors represents a clinically validated strategy to modulate oncogenic signaling through selective attenuation of gene expression. Here, we demonstrate that CBP/EP300 bromodomain inhibition preferentially abrogates the viability of multiple myeloma cell lines. Selective targeting of multiple myeloma cell lines through CBP/EP300 bromodomain inhibition is the result of direct transcriptional suppression of the lymphocyte-specific transcription factor IRF4, which is essential for the viability of myeloma cells, and the concomitant repression of the IRF4 target gene c-MYC. Ectopic expression of either IRF4 or MYC antagonizes the phenotypic and transcriptional effects of CBP/EP300 bromodomain inhibition, highlighting the IRF4/MYC axis as a key component of its mechanism of action. These findings suggest that CBP/EP300 bromodomain inhibition represents a viable therapeutic strategy for targeting multiple myeloma and other lymphoid malignancies dependent on the IRF4 network. DOI: http://dx.doi.org/10.7554/eLife.10483.001


Journal of Biological Chemistry | 2016

Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition

Srimoyee Ghosh; Alexander I. Taylor; Melissa Chin; Hon-Ren Huang; Andrew R. Conery; Jennifer A. Mertz; Andres Salmeron; Pranal J. Dakle; Deanna A. Mele; Alexandre Côté; Hari Jayaram; Jeremy W. Setser; Florence Poy; Georgia Hatzivassiliou; Denise DeAlmeida-Nagata; Peter Sandy; Charlie Hatton; F. Anthony Romero; Eugene Chiang; Thornik Reimer; Terry D. Crawford; Eneida Pardo; Venita G. Watson; Vickie Tsui; Andrea G. Cochran; Laura Zawadzke; Jean-Christophe Harmange; James E. Audia; Barbara M. Bryant; Richard T. Cummings

Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.


Bioorganic & Medicinal Chemistry Letters | 2016

Identification of potent, selective KDM5 inhibitors

Victor S. Gehling; Steven Bellon; Jean-Christophe Harmange; Yves Leblanc; Florence Poy; Shobu Odate; Shane Buker; Fei Lan; Shilpi Arora; Kaylyn E. Williamson; Peter Sandy; Richard T. Cummings; Christopher M. Bailey; Louise Bergeron; Weifeng Mao; Amy Gustafson; Yichin Liu; Erica VanderPorten; James E. Audia; Patrick Trojer; Brian K. Albrecht

This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization.


Bioorganic & Medicinal Chemistry Letters | 2015

Development of methyl isoxazoleazepines as inhibitors of BET

Michael C. Hewitt; Yves Leblanc; Victor S. Gehling; Rishi G. Vaswani; Alexandre Côté; Christopher G. Nasveschuk; Alexander M. Taylor; Jean-Christophe Harmange; James E. Audia; Eneida Pardo; Rich Cummings; Shivangi Joshi; Peter Sandy; Jennifer A. Mertz; Robert J. Sims; Louise Bergeron; Barbara M. Bryant; Steve Bellon; Florence Poy; Hariharan Jayaram; Yong Tang; Brian K. Albrecht

In this report we detail the evolution of our previously reported thiophene isoxazole BET inhibitor chemotype exemplified by CPI-3 to a novel bromodomain selective chemotype (the methyl isoxazoleazepine chemotype) exemplified by carboxamide 23. The methyl isoxazoleazepine chemotype provides potent inhibition of the bromodomains of the BET family, excellent in vivo PK across species, low unbound clearance, and target engagement in a MYC PK-PD model.


ACS Medicinal Chemistry Letters | 2016

Discovery of Benzotriazolo[4,3-d][1,4]diazepines as Orally Active Inhibitors of BET Bromodomains.

Alexander M. Taylor; Rishi G. Vaswani; Victor S. Gehling; Michael C. Hewitt; Yves Leblanc; James E. Audia; Steve Bellon; Richard T. Cummings; Alexandre Côté; Jean-Christophe Harmange; Hari Jayaram; Shivangi Joshi; Jose M. Lora; Jennifer A. Mertz; Adrianne Neiss; Eneida Pardo; Christopher G. Nasveschuk; Florence Poy; Peter Sandy; Jeremy W. Setser; Robert J. Sims; Yong Tang; Brian K. Albrecht

Inhibition of the bromodomains of the BET family, of which BRD4 is a member, has been shown to decrease myc and interleukin (IL) 6 in vivo, markers that are of therapeutic relevance to cancer and inflammatory disease, respectively. Herein we report substituted benzo[b]isoxazolo[4,5-d]azepines and benzotriazolo[4,3-d][1,4]diazepines as fragment-derived novel inhibitors of the bromodomain of BRD4. Compounds from these series were potent and selective in cells, and subsequent optimization of microsomal stability yielded representatives that demonstrated dose- and time-dependent reduction of plasma IL-6 in mice.

Collaboration


Dive into the Peter Sandy's collaboration.

Top Co-Authors

Avatar

Tyler Jacks

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Robert J. Sims

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Barbie

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Ian F. Dunn

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jennifer A. Mertz

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge