Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Serena J. Silver is active.

Publication


Featured researches published by Serena J. Silver.


Nature | 2009

Systematic RNA interference reveals that oncogenic KRAS -driven cancers require TBK1

David A. Barbie; Pablo Tamayo; Jesse S. Boehm; So Young Kim; Susan E. Moody; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Etienne Meylan; Claudia Scholl; Stefan Fröhling; Edmond M. Chan; Martin L. Sos; Kathrin Michel; Craig H. Mermel; Serena J. Silver; Barbara A. Weir; Jan H. Reiling; Qing Sheng; Piyush B. Gupta; Raymond C. Wadlow; Hanh Le; Ben S. Wittner; Sridhar Ramaswamy; David M. Livingston; David M. Sabatini; Matthew Meyerson; Roman K. Thomas; Eric S. Lander; Jill P. Mesirov

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-κB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Journal of Clinical Investigation | 2011

The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell–like breast cancer cells in human tumors

Lauren L.C. Marotta; Vanessa Almendro; Andriy Marusyk; Michail Shipitsin; Janina Schemme; Sarah R. Walker; Noga Bloushtain-Qimron; Jessica Kim; Sibgat Choudhury; Reo Maruyama; Zhenhua Wu; Mithat Gonen; Laura Mulvey; Marina Bessarabova; Sung Jin Huh; Serena J. Silver; So Young Kim; So Yeon Park; Hee Eun Lee; Karen S. Anderson; Andrea L. Richardson; Tatiana Nikolskaya; Yuri Nikolsky; X. Shirley Liu; David E. Root; William C. Hahn; David A. Frank; Kornelia Polyak

Intratumor heterogeneity is a major clinical problem because tumor cell subtypes display variable sensitivity to therapeutics and may play different roles in progression. We previously characterized 2 cell populations in human breast tumors with distinct properties: CD44+CD24- cells that have stem cell-like characteristics, and CD44-CD24+ cells that resemble more differentiated breast cancer cells. Here we identified 15 genes required for cell growth or proliferation in CD44+CD24- human breast cancer cells in a large-scale loss-of-function screen and found that inhibition of several of these (IL6, PTGIS, HAS1, CXCL3, and PFKFB3) reduced Stat3 activation. We found that the IL-6/JAK2/Stat3 pathway was preferentially active in CD44+CD24- breast cancer cells compared with other tumor cell types, and inhibition of JAK2 decreased their number and blocked growth of xenografts. Our results highlight the differences between distinct breast cancer cell types and identify targets such as JAK2 and Stat3 that may lead to more specific and effective breast cancer therapies.


Nature | 2008

CDK8 is a colorectal cancer oncogene that regulates β-catenin activity

Ron Firestein; Adam J. Bass; So Young Kim; Ian F. Dunn; Serena J. Silver; Isil Guney; Ellen Freed; Azra H. Ligon; Natalie Vena; Shuji Ogino; Milan G. Chheda; Pablo Tamayo; Stephen Finn; Yashaswi Shrestha; Jesse S. Boehm; Supriya K Jain; Emeric Bojarski; Craig H. Mermel; Jordi Barretina; Jennifer A. Chan; José Baselga; Josep Tabernero; David E. Root; Charles S. Fuchs; Massimo Loda; Ramesh A. Shivdasani; Matthew Meyerson; William C. Hahn

Aberrant activation of the canonical WNT/β-catenin pathway occurs in almost all colorectal cancers and contributes to their growth, invasion and survival. Although dysregulated β-catenin activity drives colon tumorigenesis, further genetic perturbations are required to elaborate full malignant transformation. To identify genes that both modulate β-catenin activity and are essential for colon cancer cell proliferation, we conducted two loss-of-function screens in human colon cancer cells and compared genes identified in these screens with an analysis of copy number alterations in colon cancer specimens. One of these genes, CDK8, which encodes a member of the mediator complex, is located at 13q12.13, a region of recurrent copy number gain in a substantial fraction of colon cancers. Here we show that the suppression of CDK8 expression inhibits proliferation in colon cancer cells characterized by high levels of CDK8 and β-catenin hyperactivity. CDK8 kinase activity was necessary for β-catenin-driven transformation and for expression of several β-catenin transcriptional targets. Together these observations suggest that therapeutic interventions targeting CDK8 may confer a clinical benefit in β-catenin-driven malignancies.


Cancer Cell | 2009

AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer

Krishna Vasudevan; David A. Barbie; Michael A. Davies; Rosalia Rabinovsky; Chontelle McNear; Jessica Kim; Bryan T. Hennessy; Hsiuyi Tseng; Panisa Pochanard; So Young Kim; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Qing Sheng; Piyush B. Gupta; Jesse S. Boehm; Jan H. Reiling; Serena J. Silver; Yiling Lu; Katherine Stemke-Hale; Bhaskar Dutta; Corwin Joy; Aysegul A. Sahin; Ana M. Gonzalez-Angulo; Ana Lluch; Lucia E. Rameh; Tyler Jacks; David E. Root; Eric S. Lander; Gordon B. Mills

Dysregulation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway occurs frequently in human cancer. PTEN tumor suppressor or PIK3CA oncogene mutations both direct PI3K-dependent tumorigenesis largely through activation of the AKT/PKB kinase. However, here we show through phosphoprotein profiling and functional genomic studies that many PIK3CA mutant cancer cell lines and human breast tumors exhibit only minimal AKT activation and a diminished reliance on AKT for anchorage-independent growth. Instead, these cells retain robust PDK1 activation and membrane localization and exhibit dependency on the PDK1 substrate SGK3. SGK3 undergoes PI3K- and PDK1-dependent activation in PIK3CA mutant cancer cells. Thus, PI3K may promote cancer through both AKT-dependent and AKT-independent mechanisms. Knowledge of differential PI3K/PDK1 signaling could inform rational therapeutics in cancers harboring PIK3CA mutations.


Nature Genetics | 2010

Subtype-specific genomic alterations define new targets for soft tissue sarcoma therapy

Jordi Barretina; Barry S. Taylor; Shantanu Banerji; Alexis Ramos; Mariana Lagos-Quintana; Penelope DeCarolis; Kinjal Shah; Nicholas D. Socci; Barbara A. Weir; Alan Ho; Derek Y. Chiang; Boris Reva; Craig H. Mermel; Gad Getz; Yevgenyi Antipin; Rameen Beroukhim; John Major; Charles Hatton; Richard Nicoletti; Megan Hanna; Ted Sharpe; Timothy Fennell; Kristian Cibulskis; Robert C. Onofrio; Tsuyoshi Saito; Neerav Shukla; Christopher Lau; Sven Nelander; Serena J. Silver; Carrie Sougnez

Soft-tissue sarcomas, which result in approximately 10,700 diagnoses and 3,800 deaths per year in the United States, show remarkable histologic diversity, with more than 50 recognized subtypes. However, knowledge of their genomic alterations is limited. We describe an integrative analysis of DNA sequence, copy number and mRNA expression in 207 samples encompassing seven major subtypes. Frequently mutated genes included TP53 (17% of pleomorphic liposarcomas), NF1 (10.5% of myxofibrosarcomas and 8% of pleomorphic liposarcomas) and PIK3CA (18% of myxoid/round-cell liposarcomas, or MRCs). PIK3CA mutations in MRCs were associated with Akt activation and poor clinical outcomes. In myxofibrosarcomas and pleomorphic liposarcomas, we found both point mutations and genomic deletions affecting the tumor suppressor NF1. Finally, we found that short hairpin RNA (shRNA)-based knockdown of several genes amplified in dedifferentiated liposarcoma, including CDK4 and YEATS4, decreased cell proliferation. Our study yields a detailed map of molecular alterations across diverse sarcoma subtypes and suggests potential subtype-specific targets for therapy.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Scoring diverse cellular morphologies in image-based screens with iterative feedback and machine learning.

Thouis R. Jones; Anne E. Carpenter; Michael R. Lamprecht; Jason Moffat; Serena J. Silver; Jennifer K. Grenier; Adam B. Castoreno; Ulrike S. Eggert; David E. Root; Polina Golland; David M. Sabatini

Many biological pathways were first uncovered by identifying mutants with visible phenotypes and by scoring every sample in a screen via tedious and subjective visual inspection. Now, automated image analysis can effectively score many phenotypes. In practical application, customizing an image-analysis algorithm or finding a sufficient number of example cells to train a machine learning algorithm can be infeasible, particularly when positive control samples are not available and the phenotype of interest is rare. Here we present a supervised machine learning approach that uses iterative feedback to readily score multiple subtle and complex morphological phenotypes in high-throughput, image-based screens. First, automated cytological profiling extracts hundreds of numerical descriptors for every cell in every image. Next, the researcher generates a rule (i.e., classifier) to recognize cells with a phenotype of interest during a short, interactive training session using iterative feedback. Finally, all of the cells in the experiment are automatically classified and each sample is scored based on the presence of cells displaying the phenotype. By using this approach, we successfully scored images in RNA interference screens in 2 organisms for the prevalence of 15 diverse cellular morphologies, some of which were previously intractable.


Nature Methods | 2006

Evidence of off-target effects associated with long dsRNAs in Drosophila melanogaster cell-based assays

Meghana M. Kulkarni; Matthew Booker; Serena J. Silver; Adam Friedman; Pengyu Hong; Norbert Perrimon; Bernard Mathey-Prevot

To evaluate the specificity of long dsRNAs used in high-throughput RNA interference (RNAi) screens performed at the Drosophila RNAi Screening Center (DRSC), we performed a global analysis of their activity in 30 genome-wide screens completed at our facility. Notably, our analysis predicts that dsRNAs containing ≥19-nucleotide perfect matches identified in silico to unintended targets may contribute to a significant false positive error rate arising from off-target effects. We confirmed experimentally that such sequences in dsRNAs lead to false positives and to efficient knockdown of a cross-hybridizing transcript, raising a cautionary note about interpreting results based on the use of a single dsRNA per gene. Although a full appreciation of all causes of false positive errors remains to be determined, we suggest simple guidelines to help ensure high-quality information from RNAi high-throughput screens.


Nature Methods | 2011

A public genome-scale lentiviral expression library of human ORFs

Xiaoping Yang; Jesse S. Boehm; Xinping Yang; Kourosh Salehi-Ashtiani; Tong Hao; Yun Shen; Rakela Lubonja; Sapana Thomas; Ozan Alkan; Tashfeen Bhimdi; Thomas M. Green; Cory M. Johannessen; Serena J. Silver; Cindy Nguyen; Ryan R. Murray; Haley Hieronymus; Dawit Balcha; Changyu Fan; Chenwei Lin; Lila Ghamsari; Marc Vidal; William C. Hahn; David E. Hill; David E. Root

Functional characterization of the human genome requires tools for systematically modulating gene expression in both loss-of-function and gain-of-function experiments. We describe the production of a sequence-confirmed, clonal collection of over 16,100 human open-reading frames (ORFs) encoded in a versatile Gateway vector system. Using this ORFeome resource, we created a genome-scale expression collection in a lentiviral vector, thereby enabling both targeted experiments and high-throughput screens in diverse cell types.


Nature | 2003

The transcription factor Eyes absent is a protein tyrosine phosphatase

Tina L. Tootle; Serena J. Silver; Erin L. Davies; Victoria Newman; Robert R. Latek; Ishara A. Mills; Jeremy D. Selengut; Beth E. W. Parlikar; Ilaria Rebay

Post-translational modifications provide sensitive and flexible mechanisms to dynamically modulate protein function in response to specific signalling inputs. In the case of transcription factors, changes in phosphorylation state can influence protein stability, conformation, subcellular localization, cofactor interactions, transactivation potential and transcriptional output. Here we show that the evolutionarily conserved transcription factor Eyes absent (Eya) belongs to the phosphatase subgroup of the haloacid dehalogenase (HAD) superfamily, and propose a function for it as a non-thiol-based protein tyrosine phosphatase. Experiments performed in cultured Drosophila cells and in vitro indicate that Eyes absent has intrinsic protein tyrosine phosphatase activity and can autocatalytically dephosphorylate itself. Confirming the biological significance of this function, mutations that disrupt the phosphatase active site severely compromise the ability of Eyes absent to promote eye specification and development in Drosophila. Given the functional importance of phosphorylation-dependent modulation of transcription factor activity, this evidence for a nuclear transcriptional coactivator with intrinsic phosphatase activity suggests an unanticipated method of fine-tuning transcriptional regulation.


Development | 2004

Signaling circuitries in development: insights from the retinal determination gene network

Serena J. Silver; Ilaria Rebay

Context-specific integration of information received from the Notch, Transforming growth factor β, Wingless/Wnt, Hedgehog and Epidermal growth factor receptor signaling pathways sets the stage for deployment of the retinal determination gene network (RDGN), a group of transcription factors that collectively directs the formation of the eye and other tissues. Recent investigations have revealed how these transcription factors are regulated by their interactions with each other and with effectors of the above signaling pathways. Further study of the RDGN may provide insights into how common cues can generate context-specific responses, a key aspect of developmental regulation that remains poorly understood.

Collaboration


Dive into the Serena J. Silver's collaboration.

Top Co-Authors

Avatar

David E. Root

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian F. Dunn

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David A. Barbie

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Sandy

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge