Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darius Kazlauskas is active.

Publication


Featured researches published by Darius Kazlauskas.


Nucleic Acids Research | 2016

The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

Darius Kazlauskas; Mart Krupovic; Česlovas Venclovas

Abstract Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication proteins. In this study, we explored whether there are common patterns underlying this extreme diversity. We identified and analyzed all major functional groups of DNA replication proteins in all available proteomes of dsDNA viruses. Our results show that some proteins are common to viruses infecting all domains of life and likely represent components of the ancestral core set. These include B-family polymerases, SF3 helicases, archaeo-eukaryotic primases, clamps and clamp loaders of the archaeo-eukaryotic type, RNase H and ATP-dependent DNA ligases. We also discovered a clear correlation between genome size and self-sufficiency of viral DNA replication, the unanticipated dominance of replicative helicases and pervasive functional associations among certain groups of DNA replication proteins. Altogether, our results provide a comprehensive view on the diversity and evolution of replication systems in the DNA virome and uncover fundamental principles underlying the orchestration of viral DNA replication.


Nucleic Acids Research | 2011

Computational analysis of DNA replicases in double-stranded DNA viruses: relationship with the genome size

Darius Kazlauskas; Česlovas Venclovas

Genome duplication in free-living cellular organisms is performed by DNA replicases that always include a DNA polymerase, a DNA sliding clamp and a clamp loader. What are the evolutionary solutions for DNA replicases associated with smaller genomes? Are there some general principles? To address these questions we analyzed DNA replicases of double-stranded (ds) DNA viruses. In the process we discovered highly divergent B-family DNA polymerases in phiKZ-like phages and remote sliding clamp homologs in Ascoviridae family and Ma-LMM01 phage. The analysis revealed a clear dependency between DNA replicase components and the viral genome size. As the genome size increases, viruses universally encode their own DNA polymerases and frequently have homologs of DNA sliding clamps, which sometimes are accompanied by clamp loader subunits. This pattern is highly non-random. The absence of sliding clamps in large viral genomes usually coincides with the presence of atypical polymerases. Meanwhile, sliding clamp homologs, not accompanied by clamp loaders, have an elevated positive electrostatic potential, characteristic of non-ring viral processivity factors that bind the DNA directly. Unexpectedly, we found that similar electrostatic properties are shared by the eukaryotic 9-1-1 clamp subunits, Hus1 and, to a lesser extent, Rad9, also suggesting the possibility of direct DNA binding.


Bioinformatics | 2014

Herpesviral helicase-primase subunit UL8 is inactivated B-family polymerase

Darius Kazlauskas; Česlovas Venclovas

MOTIVATION Herpesviruses are large DNA viruses causing a variety of diseases in humans and animals. To develop effective treatment, it is important to understand the mechanisms of their replication. One of the components of the herpesviral DNA replication system is a helicase-primase complex, consisting of UL5 (helicase), UL52 (primase) and UL8. UL8 is an essential herpesviral protein involved in multiple protein-protein interactions. Intriguingly, so far no UL8 homologs outside of herpesviruses could be identified. Moreover, nothing is known about its structure or domain organization. RESULTS Here, combining sensitive homology detection methods and homology modeling, we found that the UL8 protein family is related to B-family polymerases. In the course of evolution, UL8 has lost the active site and has undergone a reduction of DNA-binding motifs. The loss of active site residues explains the failure to detect any catalytic activity of UL8. A structural model of human herpes virus 1 UL8 constructed as part of the study is consistent with the mutation data targeting its interaction with primase UL52. It also provides a platform for studying multiple interactions that UL8 is involved in. The two other components of helicase-primase complex show evolutionary links with a newly characterized human primase that also has DNA polymerase activity (PrimPol) and the Pif1 helicase, respectively. The role of these enzymes in recovering stalled replication forks suggests mechanistic and functional similarities with herpesviral proteins. CONTACT [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Viruses | 2018

Pervasive Chimerism in the Replication-Associated Proteins of Uncultured Single-Stranded DNA Viruses

Darius Kazlauskas; Arvind Varsani; Mart Krupovic

Numerous metagenomic studies have uncovered a remarkable diversity of circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA viruses, the majority of which are uncultured and unclassified. Unlike capsid proteins, the Reps show significant similarity across different groups of CRESS DNA viruses and have conserved domain organization with the N-terminal nuclease and the C-terminal helicase domain. Consequently, Rep is widely used as a marker for identification, classification and assessment of the diversity of CRESS DNA viruses. However, it has been shown that in certain viruses the Rep nuclease and helicase domains display incongruent evolutionary histories. Here, we systematically evaluated the co-evolutionary patterns of the two Rep domains across classified and unclassified CRESS DNA viruses. Our analysis indicates that the Reps encoded by members of the families Bacilladnaviridae, Circoviridae, Geminiviridae, Genomoviridae, Nanoviridae and Smacoviridae display largely congruent evolutionary patterns in the two domains. By contrast, among the unclassified CRESS DNA viruses, 71% appear to have chimeric Reps. Such massive chimerism suggests that unclassified CRESS DNA viruses represent a dynamic population in which exchange of gene fragments encoding the nuclease and helicase domains is extremely common. Furthermore, purging of the chimeric sequences uncovered six monophyletic Rep groups that may represent new families of CRESS DNA viruses.


BMC Bioinformatics | 2015

Viral DNA replication: new insights and discoveries from large scale computational analysis

Darius Kazlauskas; Česlovas Venclovas

Background The ability to replicate is essential for all living entities. Duplication of genetic information is carried out by replication proteins. DNA replication has been well studied in T7, T4 phages and herpes viruses; however, the information about replication mechanisms from other groups of viruses is either scarce or missing altogether. Double-stranded (ds) DNA viruses infect cells from all domains of life, they evolve fast and are very diverse. Their genome size varies from 5 to 2,500 kbp.


Journal of Molecular Biology | 2017

Novel Families of Archaeo-Eukaryotic Primases Associated with Mobile Genetic Elements of Bacteria and Archaea

Darius Kazlauskas; Guennadi Sezonov; Nicole Charpin; Česlovas Venclovas; Patrick Forterre; Mart Krupovic

Cellular organisms in different domains of life employ structurally unrelated, non-homologous DNA primases for synthesis of a primer for DNA replication. Archaea and eukaryotes encode enzymes of the archaeo-eukaryotic primase (AEP) superfamily, whereas bacteria uniformly use primases of the DnaG family. However, AEP genes are widespread in bacterial genomes raising questions regarding their provenance and function. Here, using an archaeal primase–polymerase PolpTN2 encoded by pTN2 plasmid as a seed for sequence similarity searches, we recovered over 800 AEP homologs from bacteria belonging to 12 highly diverse phyla. These sequences formed a supergroup, PrimPol-PV1, and could be classified into five novel AEP families which are characterized by a conserved motif containing an arginine residue likely to be involved in nucleotide binding. Functional assays confirm the essentiality of this motif for catalytic activity of the PolpTN2 primase–polymerase. Further analyses showed that bacterial AEPs display a range of domain organizations and uncovered several candidates for novel families of helicases. Furthermore, sequence and structure comparisons suggest that PriCT-1 and PriCT-2 domains frequently fused to the AEP domains are related to each other as well as to the non-catalytic, large subunit of archaeal and eukaryotic primases, and to the recently discovered PriX subunit of archaeal primases. Finally, genomic neighborhood analysis indicates that the identified AEPs encoded in bacterial genomes are nearly exclusively associated with highly diverse integrated mobile genetic elements, including integrative conjugative plasmids and prophages.


bioRxiv | 2018

Origins and Evolution of the Global RNA Virome

Valerian V. Dolja; Yuri I. Wolf; Darius Kazlauskas; Jaime Iranzo; Adriana Lucía-Sanz; Jens H. Kuhn; Mart Krupovic; Eugene V. Koonin

Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in animals and plants. The recent advances of metaviromics prompted us to perform a detailed phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome. The only universal gene among RNA viruses is the RNA-dependent RNA polymerase (RdRp). We developed an iterative computational procedure that alternates the RdRp phylogenetic tree construction with refinement of the underlying multiple sequence alignments. The resulting tree encompasses 4,617 RNA virus RdRps and consists of 5 major branches, 2 of which include positive-sense RNA viruses, 1 is a mix of positive-sense (+) RNA and double-stranded (ds) RNA viruses, and 2 consist of dsRNA and negative-sense (−) RNA viruses, respectively. This tree topology implies that dsRNA viruses evolved from +RNA viruses on at least two independent occasions, whereas -RNA viruses evolved from dsRNA viruses. Reconstruction of RNA virus evolution using the RdRp tree as the scaffold suggests that the last common ancestors of the major branches of +RNA viruses encoded only the RdRp and a single jelly-roll capsid protein. Subsequent evolution involved independent capture of additional genes, particularly, those encoding distinct RNA helicases, enabling replication of larger RNA genomes and facilitating virus genome expression and virus-host interactions. Phylogenomic analysis reveals extensive gene module exchange among diverse viruses and horizontal virus transfer between distantly related hosts. Although the network of evolutionary relationships within the RNA virome is bound to further expand, the present results call for a thorough reevaluation of the RNA virus taxonomy. IMPORTANCE The majority of the diverse viruses infecting eukaryotes have RNA genomes, including numerous human, animal, and plant pathogens. Recent advances of metagenomics have led to the discovery of many new groups of RNA viruses in a wide range of hosts. These findings enable a far more complete reconstruction of the evolution of RNA viruses than what was attainable previously. This reconstruction reveals the relationships between different Baltimore Classes of viruses and indicates extensive transfer of viruses between distantly related hosts, such as plants and animals. These results call for a major revision of the existing taxonomy of RNA viruses.


Extremophiles | 2014

Influence of N- and/or C-terminal regions on activity, expression, characteristics and structure of lipase from Geobacillus sp. 95

Renata Gudiukaitė; Audrius Gegeckas; Darius Kazlauskas; Donaldas Citavicius


Virology | 2017

Evolutionary history of ssDNA bacilladnaviruses features horizontal acquisition of the capsid gene from ssRNA nodaviruses

Darius Kazlauskas; Anisha Dayaram; Simona Kraberger; Sharyn J. Goldstien; Arvind Varsani; Mart Krupovic


Bioinformatics | 2012

Two distinct SSB protein families in nucleo-cytoplasmic large DNA viruses

Darius Kazlauskas; Česlovas Venclovas

Collaboration


Dive into the Darius Kazlauskas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arvind Varsani

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eugene V. Koonin

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge