Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devendra K. Sadana is active.

Publication


Featured researches published by Devendra K. Sadana.


international electron devices meeting | 2009

Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications

Kangguo Cheng; Ali Khakifirooz; Pranita Kulkarni; Shom Ponoth; J. Kuss; Davood Shahrjerdi; Lisa F. Edge; A. Kimball; Sivananda K. Kanakasabapathy; K. Xiu; Stefan Schmitz; Thomas N. Adam; Hong He; Nicolas Loubet; Steven J. Holmes; Sanjay Mehta; D. Yang; A. Upham; Soon-Cheon Seo; J. L. Herman; Richard Johnson; Yu Zhu; P. Jamison; B. Haran; Zhengmao Zhu; L. H. Vanamurth; S. Fan; D. Horak; Huiming Bu; Philip J. Oldiges

We present a new ETSOI CMOS integration scheme. The new process flow incorporates all benefits from our previous unipolar work. Only a single mask level is required to form raised source/drain (RSD) and extensions for both NFET and PFET. Another new feature of this work is the incorporation of two strain techniques to boost performance, (1) Si:C RSD for NFET and SiGe RSD for PFET, and (2) enhanced stress liner effect coupling with faceted RSD. Using the new flow and the stress boosters we demonstrate NFET and PFET drive currents of 640 and 490 µA/µm, respectively, at Ioff = 300 pA/µm, VDD = 0.9V, and LG = 25nm. Respectable device performance along with low GIDL makes these devices attractive for low power applications. Record low VT variability is achieved with AVt of 1.25 mV·µm in our high-k/metal-gate ETSOI. The new process flow is also capable of supporting devices with multiple gate dielectric thicknesses as well as analog devices which are demonstrated with excellent transconductance and matching characteristics.


Nature Communications | 2014

Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene

Jeehwan Kim; Can Bayram; Hongsik Park; Cheng Wei Cheng; Christos D. Dimitrakopoulos; John A. Ott; Kathleen B. Reuter; Stephen W. Bedell; Devendra K. Sadana

There are numerous studies on the growth of planar films on sp(2)-bonded two-dimensional (2D) layered materials. However, it has been challenging to grow single-crystalline films on 2D materials due to the extremely low surface energy. Recently, buffer-assisted growth of crystalline films on 2D layered materials has been introduced, but the crystalline quality is not comparable with the films grown on sp(3)-bonded three-dimensional materials. Here we demonstrate direct van der Waals epitaxy of high-quality single-crystalline GaN films on epitaxial graphene with low defectivity and surface roughness comparable with that grown on conventional SiC or sapphire substrates. The GaN film is released and transferred onto arbitrary substrates. The post-released graphene/SiC substrate is reused for multiple growth and transfer cycles of GaN films. We demonstrate fully functional blue light-emitting diodes (LEDs) by growing LED stacks on reused graphene/SiC substrates followed by transfer onto plastic tapes.


Nature Communications | 2013

Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics

Cheng-Wei Cheng; Kuen-Ting Shiu; Ning Li; Shu-Jen Han; Leathen Shi; Devendra K. Sadana

Epitaxial lift-off process enables the separation of III-V device layers from gallium arsenide substrates and has been extensively explored to avoid the high cost of III-V devices by reusing the substrates. Conventional epitaxial lift-off processes require several post-processing steps to restore the substrate to an epi-ready condition. Here we present an epitaxial lift-off scheme that minimizes the amount of post-etching residues and keeps the surface smooth, leading to direct reuse of the gallium arsenide substrate. The successful direct substrate reuse is confirmed by the performance comparison of solar cells grown on the original and the reused substrates. Following the features of our epitaxial lift-off process, a high-throughput technique called surface tension-assisted epitaxial lift-off was developed. In addition to showing full wafer gallium arsenide thin film transfer onto both rigid and flexible substrates, we also demonstrate devices, including light-emitting diode and metal-oxide-semiconductor capacitor, first built on thin active layers and then transferred to secondary substrates.


Applied Physics Letters | 2008

Inversion mode n-channel GaAs field effect transistor with high-k/metal gate

J. P. de Souza; Edward W. Kiewra; Yanning Sun; A. Callegari; Devendra K. Sadana; Ghavam G. Shahidi; David J. Webb; Jean Fompeyrine; R. Germann; C. Rossel; Chiara Marchiori

Highly effective passivation of GaAs surface is achieved by a thin amorphous Si (a-Si) cap, deposited by plasma enhanced chemical vapor deposition method. Capacitance voltage measurements show that carrier accumulation or inversion layer is readily formed in response to an applied electrical field when GaAs is passivated with a-Si. High performance inversion mode n-channel GaAs metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated with an a-Si/high-k/metal gate stack. Drain current in saturation region of 220mA∕mm with a mobility of 885cm2∕Vs were obtained at a gate overdrive voltage of 3.25V in MOSFETs with 5μm gate length.


photovoltaic specialists conference | 2011

Kerf-Less Removal of Si, Ge, and III–V Layers by Controlled Spalling to Enable Low-Cost PV Technologies

Stephen W. Bedell; Davood Shahrjerdi; Bahman Hekmatshoar; Keith E. Fogel; Paul A. Lauro; John A. Ott; Norma Sosa; Devendra K. Sadana

Kerf-less removal of surface layers of photovoltaic materials including silicon, germanium, and III-Vs is demonstrated by controlled spalling technology. The method is extremely simple, versatile, and applicable to a wide range of substrates. Controlled spalling technology requires a stressor layer, such as Ni, to be deposited on the surface of a brittle material, and the controlled removal of a continuous surface layer could be performed at a predetermined depth by manipulating the thickness and stress of the Ni layer. Because the entire process is at room temperature, this technique can be applied to kerf-free ingot dicing, removal of preformed p-n junctions or epitaxial layers, or even completed devices. We successfully demonstrate kerf-free ingot dicing, as well as the removal of III-V single-junction epitaxial layers from a Ge substrate. Solar cells formed on the spalled and transferred single-junction layers showed similar characteristics to nonspalled (bulk) cells, indicating that the quality of the epitaxial layers is not compromised as a result of spalling.


IEEE Electron Device Letters | 2009

High-Performance

Yanning Sun; Edward W. Kiewra; J. P. de Souza; James J. Bucchignano; Keith E. Fogel; Devendra K. Sadana; Ghavam G. Shahidi

Long and short buried-channel In0.7Ga0.3As MOSFETs with and without alpha-Si passivation are demonstrated. Devices with alpha-Si passivation show much higher transconductance and an effective peak mobility of 3810 cm2/ V middots. Short-channel MOSFETs with a gate length of 160 nm display a current of 825 muA/mum at Vg - Vt = 1.6 V and peak transconductance of 715 muS/mum. In addition, the virtual source velocity extracted from the short-channel devices is 1.4-1.7 times higher than that of Si MOSFETs. These results indicate that the high-performance In0.7Ga0.3 As-channel MOSFETs passivated by an alpha -Si layer are promising candidates for advanced post-Si CMOS applications.


Science | 2013

\hbox{In}_{0.7}\hbox{Ga}_{0.3}\hbox{As}

Jeehwan Kim; Hongsik Park; James B. Hannon; Stephen W. Bedell; Keith E. Fogel; Devendra K. Sadana; Christos D. Dimitrakopoulos

Monolayer Graphene via Two Transfers Oriented monolayers of graphene containing some bilayer regions can be formed on silicon carbide crystal surfaces, but, to be cost effective, the graphene needs to be exfoliated and transferred to other substrates so that the silicon carbide crystal can be reused. Kim et al. (p. 833, published online 31 October) used a nickel film grown to a thickness designed to impart a particular surface stress as a “handle” to exfoliate the graphene layer for transfer to a silica substrate. An additional gold layer was then used to remove the excess monolayer from the bilayer regions to create a monolayer suitable for electronics applications. A two-step exfoliation process allows multiple transfers of oriented monolayer graphene from a silicon carbide surface. The performance of optimized graphene devices is ultimately determined by the quality of the graphene itself. Graphene grown on copper foils is often wrinkled, and the orientation of the graphene cannot be controlled. Graphene grown on SiC(0001) via the decomposition of the surface has a single orientation, but its thickness cannot be easily limited to one layer. We describe a method in which a graphene film of one or two monolayers grown on SiC is exfoliated via the stress induced with a Ni film and transferred to another substrate. The excess graphene is selectively removed with a second exfoliation process with a Au film, resulting in a monolayer graphene film that is continuous and single-oriented.


Applied Physics Letters | 2012

-Channel MOSFETs With High-

Davood Shahrjerdi; Stephen W. Bedell; Chris Ebert; Can Bayram; Bahman Hekmatshoar; Keith E. Fogel; Paul A. Lauro; M. Gaynes; Tayfun Gokmen; John A. Ott; Devendra K. Sadana

In this letter, we demonstrate the effectiveness of the controlled spalling technology for producing high-efficiency (28.7%) thin-film InGaP/(In)GaAs/Ge tandem solar cells. The controlled spalling technique was employed to separate the as-grown solar cell structure from the host Ge wafer followed by its transfer to an arbitrary Si support substrate. The structural and electrical properties of the thin-film tandem cells were examined and compared against those on the original bulk Ge substrate. The comparison of the electrical data suggests the equivalency in cell parameters for both the thin-film (spalled) and bulk (non-spalled) cells, confirming that the controlled spalling technology does maintain the integrity of all layers in such an elaborate solar cell structure.


Applied Physics Letters | 2006

\kappa

S. J. Koester; E W Kiewra; Yanning Sun; Deborah A. Neumayer; John A. Ott; M. Copel; Devendra K. Sadana; David J. Webb; Jean Fompeyrine; Jean-Pierre Locquet; Chiara Marchiori; Marilyne Sousa; R Germann

Evidence of inversion in GaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectrics and α-Si∕SiO2 interlayers is reported. Capacitors formed on n-GaAs with atomic layer-deposited HfO2 displayed C-V characteristics with minimum Dit of 7×1011cm−2∕eV, while capacitors with molecular beam epitaxy-deposited HfO2 on p-GaAs had Dit=3×1012cm−2∕eV. Lateral charge transport was confirmed using illuminated C-V measurements on capacitors fabricated with thick Al electrodes. Under these conditions, capacitors on n-GaAs (p-GaAs) showed “low-frequency” C-V behavior, indicated by a sharp capacitance increase and saturation at negative (positive) gate bias, confirming the presence of mobile charge at the semiconductor/dielectric interface.


international electron devices meeting | 1997

Gate Dielectrics and

Dominic J. Schepis; Fariborz Assaderaghi; D.S. Yee; W. Rausch; A.C. Ajmera; E. Leobandung; R. Flaker; Devendra K. Sadana; H.J. Hovel; T. Kebede; C. Schiller; S. Wu; L.F. Wagner; M.J. Saccamango; S. Ratanaphanyarat; M.C. Hsieh; K.A. Tallman; R.M. Martino; D. Fitzpatrick; M. Hakey; S.F. Chu; Bijan Davari; Ghavam G. Shahidi

In this paper a 0.25 /spl mu/m SOI CMOS technology is described. It uses undepleted SOI devices with nominal channel length of 0.15 /spl mu/m, minimum channel length in the 0.1 /spl mu/m range, supply voltage of 1.8 V, local interconnect, 6 levels of metal, and same ground rules as the comparable bulk 0.25 /spl mu/m CMOS. Key technology elements considered include device, performance, reliability, ESD, and circuit functionality. Using this SOI CMOS, a 4 Mb SRAM is demonstrated. This is the highest performance 0.25 /spl mu/m CMOS technology reported to date.

Collaboration


Dive into the Devendra K. Sadana's collaboration.

Researchain Logo
Decentralizing Knowledge