Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diptiman D. Bose is active.

Publication


Featured researches published by Diptiman D. Bose.


Environmental Health Perspectives | 2012

PCB-95 modulates the calcium-dependent signaling pathway responsible for activity-dependent dendritic growth.

Gary A. Wayman; Diptiman D. Bose; Dongren Yang; Donald A. Bruun; Soren Impey; Veronica Ledoux; Isaac N. Pessah; Pamela J. Lein

Background: Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) promote dendritic growth in hippocampal neurons via ryanodine receptor (RyR)-dependent mechanisms; however, downstream signaling events that link enhanced RyR activity to dendritic growth are unknown. Activity-dependent dendritic growth, which is a critical determinant of neuronal connectivity in the developing brain, is mediated by calcium ion (Ca2+)-dependent activation of Ca2+/calmodulin kinase-I (CaMKI), which triggers cAMP response element binding protein (CREB)-dependent Wnt2 transcription. RyRs regulate the spatiotemporal dynamics of intracellular Ca2+ signals, but whether RyRs promote dendritic growth via modulation of this signaling pathway is not known. Objective: We tested the hypothesis that the CaMKI–CREB–Wnt2 signaling pathway couples NDL PCB-enhanced RyR activity to dendritic arborization. Methods and Results: Ca2+ imaging of dissociated cultures of primary rat hippocampal neurons indicated that PCB-95 (2,2´,3,5´6-pentachlorobiphenyl; a potent RyR potentiator), enhanced synchronized Ca2+ oscillations in somata and dendrites that were blocked by ryanodine. As determined by Western blotting and quantitative polymerase chain reaction, PCB-95 also activated CREB and up-regulated Wnt2. Blocking CaMKK, CaMKIα/γ, MEK/ERK, CREB, or Wnt2 prevented PCB-95–induced dendritic growth. Antagonism of γ-aminobutyric acid (GABA) receptors with bicuculline (BIC) phenocopied the dendrite-promoting effects of PCB-95, and pharmacological antagonism or siRNA knockdown of RyR blocked BIC-induced dendritic growth in dissociated and slice cultures of hippocampal neurons. Conclusions: RyR activity contributes to dynamic remodeling of dendritic architecture in response to NDL PCBs via CaMKI–CREB–Wnt2 signaling in rats. Our findings identify PCBs as candidate environmental risk factors for neurodevelopmental disorders, especially in children with heritable deficits in calcium signaling associated with autism.


Environmental Health Perspectives | 2012

PCB-95 promotes dendritic growth via ryanodine receptor-dependent mechanisms.

Gary A. Wayman; Dongren Yang; Diptiman D. Bose; Veronica Ledoux; Donald A. Bruun; Isaac N. Pessah; Pamela J. Lein

Background: Aroclor 1254 (A1254) interferes with normal dendritic growth and plasticity in the developing rodent brain, but the mechanism(s) mediating this effect have yet to be established. Non-dioxin-like (NDL) polychlorinated biphenyls (PCBs) enhance the activity of ryanodine receptor (RyR) calcium ion (Ca2+) channels, which play a central role in regulating the spatiotemporal dynamics of intracellular Ca2+ signaling. Ca2+ signaling is a predominant factor in shaping dendritic arbors, but whether PCB potentiation of RyR activity influences dendritic growth is not known. Objective: We determined whether RyR activity is required for PCB effects on dendritic growth. Methods and Results: Golgi analysis of hippocampi from weanling rats confirmed that developmental exposure via the maternal diet to NDL PCB-95 (2,2´,3,5´6-pentachlorobiphenyl), a potent RyR potentiator, phenocopies the dendrite-promoting effects of A1254. Dendritic growth in dissociated cultures of primary hippocampal neurons and in hippocampal slice cultures is similarly enhanced by PCB-95 but not by PCB-66 (2,3,4´,4-tetrachlorobiphenyl), a congener with negligible effects on RyR activity. The dendrite-promoting effects of PCB-95 are evident at concentrations as low as 2 pM and are inhibited by either pharmacologic blockade or siRNA knockdown of RyRs. Conclusions: Our findings demonstrate that environmentally relevant levels of NDL PCBs modulate neuronal connectivity via RyR-dependent effects on dendritic arborization. In addition, these findings identify RyR channel dysregulation as a novel mechanism contributing to dysmorphic dendritogenesis associated with heritable and environmentally triggered neurodevelopmental disorders.


Environmental Health Perspectives | 2012

Para- and ortho-substitutions are key determinants of polybrominated diphenyl ether activity toward ryanodine receptors and neurotoxicity.

Kyung-Ho Kim; Diptiman D. Bose; Atefeh Ghogha; Joyce Riehl; Rui Zhang; Christopher D. Barnhart; Pamela J. Lein; Isaac N. Pessah

Background Polybrominated diphenyl ethers (PBDEs) are widely used flame retardants that bioaccumulate in human tissues. Their neurotoxicity involves dysregulation of calcium ion (Ca2+) signaling; however, specific mechanisms have yet to be defined. Objective We aimed to define the structure–activity relationship (SAR) for PBDEs and their metabolites toward ryanodine receptors type 1 (RyR1) and type 2 (RyR2) and to determine whether it predicts neurotoxicity. Methods We analyzed [3H]ryanodine binding, microsomal Ca2+ fluxes, cellular measurements of Ca2+ homeostasis, and neurotoxicity to define mechanisms and specificity of PBDE-mediated Ca2+ dysregulation. Results PBDEs possessing two ortho-bromine substituents and lacking at least one para-bromine substituent (e.g., BDE-49) activate RyR1 and RyR2 with greater efficacy than corresponding congeners with two para-bromine substitutions (e.g., BDE-47). Addition of a methoxy group in the free para position reduces the activity of parent PBDEs. The hydroxylated BDEs 6-OH-BDE-47 and 4′-OH-BDE-49 are biphasic RyR modulators. Pretreatment of HEK293 cells (derived from human embryonic kidney cells) expressing either RyR1 or RyR2 with BDE-49 (250 nM) sensitized Ca2+ flux triggered by RyR agonists, whereas BDE-47 (250 nM) had negligible activity. The divergent activity of BDE-49, BDE-47, and 6-OH-BDE-47 toward RyRs predicted neurotoxicity in cultures of cortical neurons. Conclusions We found that PBDEs are potent modulators of RyR1 and RyR2. A stringent SAR at the ortho and para position determined whether a congener enhanced, inhibited, or exerted nonmonotonic actions toward RyRs. These results identify a convergent molecular target of PBDEs previously identified for noncoplanar polychlorinated biphenyls (PCBs) that predicts their cellular neurotoxicity and therefore could be a useful tool in risk assessment of PBDEs and related compounds.


Molecular Pharmacology | 2009

The Na+/Ca2+ Exchange Inhibitor 2-(2-(4-(4-Nitrobenzyloxy)phenyl)ethyl)isothiourea Methanesulfonate (KB-R7943) Also Blocks Ryanodine Receptors Type 1 (RyR1) and Type 2 (RyR2) Channels

Genaro Barrientos; Diptiman D. Bose; Wei Feng; Isela T. Padilla; Isaac N. Pessah

Na+/Ca2+ exchanger (NCX) is a plasma membrane transporter that moves Ca2+ in or out of the cell, depending on membrane potential and transmembrane ion gradients. NCX is the main pathway for Ca2+ extrusion from excitable cells. NCX inhibitors can ameliorate cardiac ischemia-reperfusion injury and promote high-frequency fatigue of skeletal muscle, purportedly by inhibiting the Ca2+ inward mode of NCX. Here we tested two known NCX inhibitors, 2-(2-(4-(4-nitrobenzyloxy)phenyl)ethyl)-isothiourea methanesulfonate (KB-R7943) and the structurally related 2-[[4-[(4-Nitrophenyl)methoxy]phenyl]methyl]-4-thiazoli dinecarboxylic acid ethyl ester (SN-6), for their influence on electrically or caffeine-evoked Ca2+ transients in adult dissociated flexor digitorum brevis (FDB) skeletal muscle fibers and human embryonic kidney (HEK) 293 cells that have stable expression of type 1 ryanodine receptor (RyR1). KB-R7943 (≤10 μM) reversibly attenuates electrically evoked Ca2+ transients in FDB and caffeine-induced Ca2+ release in HEK 293, whereas the structurally related NCX inhibitor SN-6 does not, suggesting that KB-R7943 directly inhibits RyR1. In support of this interpretation, KB-R7943 inhibits high-affinity binding of [3H]ryanodine to RyR1 (IC50 = 5.1 ± 0.9 μM) and the cardiac isoform RyR2 (IC50 = 13.4 ± 1.8 μM). KB-R7943 interfered with the gating of reconstituted RyR1 and RyR2 channels, reducing open probability (Po), shortening mean open time, and prolonging mean closed time. KB-R7943 was more effective at blocking RyR1 with cytoplasmic conditions favoring high Po compared with those favoring low Po. SN-6 has negligible activity toward altering [3H]ryanodine binding of RyR1 and RyR2. Our results identify that KB-R7943 is a reversible, activity-dependent blocker of the two most broadly expressed RyR channel isoforms and contributes to its pharmacological and therapeutic activities.


Biochemical Journal | 2005

Activation of ryanodine receptors induces calcium influx in a neuroblastoma cell line lacking calcium influx factor activity

Diptiman D. Bose; Roshanak Rahimian; David W. Thomas

We have further characterized the Ca2+ signalling properties of the NG115-401L (or 401L) neuroblastoma cell line, which has served as an important cell line for investigating SOC (store-operated channel) influx pathways. These cells possess an unusual Ca2+ signalling phenotype characterized by the absence of Ca2+ influx when Ca2+ stores are depleted by inhibitors of SERCA (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase). Previous studies found that Ca2+-store depletion does not produce a CIF (Ca2+ influx factor) activity in 401L cells. These observations have prompted the question whether 401L cells possess the signalling machinery that permits non-voltage-gated Ca2+ influx to occur. We tested the hypothesis that ryanodine-sensitive Ca2+ pools and activation of RyRs (ryanodine receptors) constitute a signalling pathway capable of inducing Ca2+ influx in 401L cells. We found that 401L cells express mRNA for RyR1 and RyR2 and that RyR activators induced Ca2+ release. Activation of RyRs robustly couples with Ca2+ influx responses in 401L cells, in sharp contrast with absence of Ca2+ influx when cells are treated with SERCA inhibitors. Thus it is clear that 401L cells, despite lacking depletion-induced Ca2+ influx pathways, express the functional components of a Ca2+ influx pathway under the control of RyR function. These findings further support the importance of the 401L cell line as an important cell phenotype for deciphering Ca2+ influx regulation.


Biochemical and Biophysical Research Communications | 2009

The actin cytoskeleton differentially regulates NG115-401L cell ryanodine receptor and inositol 1,4,5-trisphosphate receptor induced calcium signaling pathways.

Diptiman D. Bose; David W. Thomas

Regulation of bi-directional communication between intracellular Ca(2+) pools and surface Ca(2+) channels remains incompletely characterized. We report Ca(2+) release mediated by inositol 1,4,5-trisphosphate receptor (IP(3)R) and ryanodine receptor (RyR) pathways is diminished under actin cytoskeleton disruption in NG115-401L (401L) neuronal cells, yet despite truncated Ca(2+) release, Ca(2+) influx was not significantly altered in these experiments. However, disruption of cortical actin networks completely abolished IP(3)R induced Ca(2+) release, whereas RyR-mediated Ca(2+) release was preserved, albeit attenuated. Moreover, cortical actin disruption completely abolished IP(3)R and RyR linked Ca(2+) influx even though Ca(2+) pool sensitivities were different. These findings suggest discrete Ca(2+) store/Ca(2+) channel coupling mechanisms in the IP(3)R and RyR pathways as revealed by the differential sensitivity to actin perturbation.


Vascular Pharmacology | 2010

Effects of 17 β-estradiol on lipopolysacharride-induced intracellular adhesion molecule-1 mRNA expression and Ca2+ homeostasis alteration in human endothelial cells

Der Thor; Rui Zhang; Leigh Anderson; Diptiman D. Bose; Gregory P. Dubé; Roshanak Rahimian

Recent evidence showed that 17 β-estradiol (E₂) decreased cytokine-induced expression of cell adhesion molecules (CAM). Changes in intracellular Ca²+ concentration ([Ca²+](i)) has been shown to be associated with CAM expression in endothelial cells. Here, the effects of E₂ (1 μM, 24 h) on the expression of intracellular adhesion molecule-1 (ICAM-1) and [Ca²+](i) were investigated in a lipopolysaccharide (LPS) (100 ng/mL, 18 h)-stimulated human endothelial cell line, EA.hy926, using real-time PCR and spectrofluorometry, respectively. PCR analysis revealed a significant increase in ICAM-1 expression in calcium ionophore A23187 (1 nM)- or LPS-stimulated cells. Pretreatment of cells with E(2) significantly inhibited LPS-induced ICAM-1 mRNA expression. [Ca²+](i) was monitored in Fura-2AM-loaded cells in the presence and absence of extracellular Ca²+ with thapsigargin (TG, 1 μM), a sarco/endoplasmic reticulum ATPase inhibitor or ATP (100 μM). The extent of TG- or ATP-induced [Ca²+](i) increase was significantly higher in LPS-stimulated cells than in control cells. Pre-treatment of LPS-stimulated cells with E₂ limited the Ca²+ response to the same level as in control cells. Furthermore, ICI 182,780, an estrogen receptor antagonist, attenuated the inhibitory actions of E₂ on ICAM-1 mRNA expression and Ca²+ responses, suggesting that estrogen receptors mediate, at least in part, the effects of estrogen. These data suggest a potential underlying mechanism for the protective effect of E₂ against atherosclerosis.


Neuropharmacology | 2006

2-Aminoethoxydiphenyl borate (2-APB) stimulates a conformationally coupled calcium release pathway in the NG115-401L neuronal cell line.

Diptiman D. Bose; David W. Thomas

We report in this study a 2-aminoethoxydiphenyl borate (2-APB) activated Ca2+ pathway in NG115-401L (401L) neuronal cells bearing resemblance to hormonal and ryanodine receptor activated pathways. We observed that 2-APB, in contrast to much earlier work, did not inhibit store operated Ca2+ channel (SOC) function, but rather induced potent Ca2+ discharge responses that robustly activated SOC-mediated Ca2+ influx. Further, these studies intriguingly revealed that the 2-APB-induced Ca2+ release pathway likely couples conformationally to targets in the plasma membrane, as membrane permeabilization or actin perturbation abolished the ability of the compound to stimulate Ca2+ signals. These findings suggest that conformationally sensitive complexes form between endoplasmic reticulum and plasma membrane components that not only regulate Ca2+ influx, previously proposed as the conformational coupling hypothesis, but are also required to promote Ca2+ release from intracellular stores. These observations further characterize the 401L neuronal cell line as having unique characteristics that may prove useful in gaining insight into the nature of the coupling mechanism linking Ca2+ release to Ca2+ influx.


Chemical Research in Toxicology | 2009

Enantiomeric Specificity of (−)-2,2′,3,3′,6,6′-Hexachlorobiphenyl toward Ryanodine Receptor Types 1 and 2

Isaac N. Pessah; Hans-Joachim Lehmler; Larry W. Robertson; Claudio F. Perez; Elaine Cabrales; Diptiman D. Bose; Wei Feng


Toxicological Sciences | 2014

PCB 136 Atropselectively Alters Morphometric and Functional Parameters of Neuronal Connectivity in Cultured Rat Hippocampal Neurons via Ryanodine Receptor-Dependent Mechanisms

Dongren Yang; Izabela Kania-Korwel; Atefeh Ghogha; Hao Chen; Marianna Stamou; Diptiman D. Bose; Isaac N. Pessah; Hans-Joachim Lehmler; Pamela J. Lein

Collaboration


Dive into the Diptiman D. Bose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela J. Lein

University of California

View shared research outputs
Top Co-Authors

Avatar

Dongren Yang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atefeh Ghogha

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudio F. Perez

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary A. Wayman

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge