Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tianyu He is active.

Publication


Featured researches published by Tianyu He.


Journal of Clinical Investigation | 2014

Early microbial translocation blockade reduces SIV-mediated inflammation and viral replication

Jan Kristoff; George Haret-Richter; Dongzhu Ma; Ruy M. Ribeiro; Cuiling Xu; Elaine Cornell; Jennifer L. Stock; Tianyu He; Adam D. Mobley; Samantha Ross; Anita Trichel; Cara C. Wilson; Russell P. Tracy; Alan Landay; Cristian Apetrei; Ivona Pandrea

Damage to the intestinal mucosa results in the translocation of microbes from the intestinal lumen into the circulation. Microbial translocation has been proposed to trigger immune activation, inflammation, and coagulopathy, all of which are key factors that drive HIV disease progression and non-HIV comorbidities; however, direct proof of a causal link is still lacking. Here, we have demonstrated that treatment of acutely SIV-infected pigtailed macaques with the drug sevelamer, which binds microbial lipopolysaccharide in the gut, dramatically reduces immune activation and inflammation and slightly reduces viral replication. Furthermore, sevelamer administration reduced coagulation biomarkers, confirming the contribution of microbial translocation in the development of cardiovascular comorbidities in SIV-infected nonhuman primates. Together, our data suggest that early control of microbial translocation may improve the outcome of HIV infection and limit noninfectious comorbidities associated with AIDS.


PLOS Pathogens | 2014

CD4 Depletion in SIV-Infected Macaques Results in Macrophage and Microglia Infection with Rapid Turnover of Infected Cells

Luca Micci; Xavier Alvarez; Robin I. Iriele; Alexandra M. Ortiz; Emily S. Ryan; Colleen S. McGary; Claire Deleage; Brigitte B. McAtee; Tianyu He; Cristian Apetrei; Kirk A. Easley; Savita Pahwa; Ronald G. Collman; Cynthia A. Derdeyn; Miles P. Davenport; Jacob D. Estes; Guido Silvestri; Andrew A. Lackner; Mirko Paiardini

In rhesus macaques (RMs), experimental depletion of CD4+ T-cells prior to SIV infection results in higher viremia and emergence of CD4-independent SIV-envelopes. In this study we used the rhesus recombinant anti-CD4 antibody CD4R1 to deplete RM CD4+ T-cells prior to SIVmac251 infection and investigate the sources of the increased viral burden and the lifespan of productively infected cells. CD4-depleted animals showed (i) set-point viral load two-logs higher than controls; (ii) macrophages constituting 80% of all SIV vRNA+ cells in lymph node and mucosal tissues; (iii) substantial expansion of pro-inflammatory monocytes; (iv) aberrant activation and infection of microglial cells; and (v) lifespan of productively infected cells significantly longer in comparison to controls, but markedly shorter than previously estimated for macrophages. The net effect of CD4+ T-cell depletion is an inability to control SIV replication and a shift in the tropism of infected cells to macrophages, microglia, and, potentially, other CD4-low cells which all appear to have a shortened in vivo lifespan. We believe these findings have important implications for HIV eradication studies.


Journal of Clinical Investigation | 2015

Interleukin-21 combined with ART reduces inflammation and viral reservoir in SIV-infected macaques.

Luca Micci; Emily S. Ryan; Rémi Fromentin; Steven E. Bosinger; Justin L. Harper; Tianyu He; Sara Paganini; Kirk A. Easley; Ann Chahroudi; Clarisse Benne; Sanjeev Gumber; Colleen S. McGary; Kenneth Rogers; Claire Deleage; Carissa Lucero; Siddappa N. Byrareddy; Cristian Apetrei; Jacob D. Estes; Jeffrey D. Lifson; Michael Piatak; Nicolas Chomont; Francois Villinger; Guido Silvestri; Jason M. Brenchley; Mirko Paiardini

Despite successful control of viremia, many HIV-infected individuals given antiretroviral therapy (ART) exhibit residual inflammation, which is associated with non-AIDS-related morbidity and mortality and may contribute to virus persistence during ART. Here, we investigated the effects of IL-21 administration on both inflammation and virus persistence in ART-treated, SIV-infected rhesus macaques (RMs). Compared with SIV-infected animals only given ART, SIV-infected RMs given both ART and IL-21 showed improved restoration of intestinal Th17 and Th22 cells and a more effective reduction of immune activation in blood and intestinal mucosa, with the latter maintained through 8 months after ART interruption. Additionally, IL-21, in combination with ART, was associated with reduced levels of SIV RNA in plasma and decreased CD4(+) T cell levels harboring replication-competent virus during ART. At the latest experimental time points, which were up to 8 months after ART interruption, plasma viremia and cell-associated SIV DNA levels remained substantially lower than those before ART initiation in IL-21-treated animals but not in controls. Together, these data suggest that IL-21 supplementation of ART reduces residual inflammation and virus persistence in a relevant model of lentiviral disease and warrants further investigation as a potential intervention for HIV infection.


Journal of Virology | 2014

Factors Associated with Siman Immunodeficiency Virus Transmission in a Natural African Nonhuman Primate Host in the Wild

Dongzhu Ma; Anna J. Jasinska; Felix Feyertag; Viskam Wijewardana; Jan Kristoff; Tianyu He; Kevin Raehtz; Christopher A. Schmitt; Yoon Jung; Jennifer Danzy Cramer; Michel M. Dione; Martin Antonio; Russell P. Tracy; Trudy R. Turner; David Robertson; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


PLOS Pathogens | 2016

Antibiotic and Antiinflammatory Therapy Transiently Reduces Inflammation and Hypercoagulation in Acutely SIV-Infected Pigtailed Macaques

Ivona Pandrea; Cuiling Xu; Jennifer L. Stock; Daniel N. Frank; Dongzhu Ma; Benjamin B. Policicchio; Tianyu He; Jan Kristoff; Elaine Cornell; George Haret-Richter; Anita Trichel; Ruy M. Ribeiro; Russell P. Tracy; Cara C. Wilson; Alan Landay; Cristian Apetrei

Increased chronic immune activation and inflammation are hallmarks of HIV/SIV infection and are highly correlated with progression to AIDS and development of non-AIDS comorbidities, such as hypercoagulability and cardiovascular disease. Intestinal dysfunction resulting in microbial translocation has been proposed as a lead cause of systemic immune activation and hypercoagulability in HIV/SIV infection. Our goal was to assess the biological and clinical impact of a therapeutic strategy designed to reduce microbial translocation through reduction of the microbial content of the intestine (Rifaximin-RFX) and of gut inflammation (Sulfasalazine-SFZ). RFX is an intraluminal antibiotic that was successfully used in patients with hepatic encephalopathy. SFZ is an antiinflammatory drug successfully used in patients with mild to moderate inflammatory bowel disease. Both these clinical conditions are associated with increased microbial translocation, similar to HIV-infected patients. Treatment was administered for 90 days to five acutely SIV-infected pigtailed macaques (PTMs) starting at the time of infection; seven untreated SIVsab-infected PTMs were used as controls. RFX+SFZ were also administered for 90 days to three chronically SIVsab-infected PTMs. RFX+SFZ administration during acute SIVsab infection of PTMs resulted in: significantly lower microbial translocation, lower systemic immune activation, lower viral replication, better preservation of mucosal CD4+ T cells and significantly lower levels of hypercoagulation biomarkers. This effect was clear during the first 40 days of treatment and was lost during the last stages of treatment. Administration of RFX+SFZ to chronically SIVsab–infected PTMs had no discernible effect on infection. Our data thus indicate that early RFX+SFZ administration transiently improves the natural history of acute and postacute SIV infection, but has no effect during chronic infection.


PLOS Pathogens | 2016

Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers

Benjamin B. Policicchio; Cuiling Xu; Egidio Brocca-Cofano; Kevin Raehtz; Tianyu He; Dongzhu Ma; Hui Li; Ranjit Sivanandham; George Haret-Richter; Tammy Dunsmore; Anita Trichel; John W. Mellors; Beatrice H. Hahn; George M. Shaw; Ruy M. Ribeiro; Ivona Pandrea; Cristian Apetrei

Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.


Journal of Immunology | 2016

Cutting Edge: T Regulatory Cell Depletion Reactivates Latent Simian Immunodeficiency Virus (SIV) in Controller Macaques While Boosting SIV-Specific T Lymphocytes

Tianyu He; Egidio Brocca-Cofano; Benjamin B. Policicchio; Ranjit Sivanandham; Rajeev Gautam; Kevin Raehtz; Cuiling Xu; Ivona Pandrea; Cristian Apetrei

T regulatory cells (Tregs) are critical in shaping the latent HIV/SIV reservoir, as they are preferentially infected, reverse CD4+ T cell activation status, and suppress CTL responses. To reactivate latent virus and boost cell-mediated immune responses, we performed in vivo Treg depletion with Ontak (denileukin diftitox) in two SIVsab-infected controller macaques. Ontak induced significant (>75%) Treg depletion and major CD4+ T cell activation, and only minimally depleted CD8+ T cells. The overall ability of Tregs to control immune responses was significantly impaired despite their incomplete depletion, resulting in both reactivation of latent virus (virus rebound to 103 viral RNA copies/ml plasma in the absence of antiretroviral therapy) and a significant boost of SIV-specific CD8+ T cell frequency, with rapid clearance of reactivated virus. As none of the latency-reversing agents in development have such dual activity, our strategy holds great promise for cure research.


Science Translational Medicine | 2017

Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

Melissa E. Schechter; Bruno B. Andrade; Tianyu He; George Haret Richter; Kevin W. Tosh; Benjamin B. Policicchio; Amrit Singh; Kevin Raehtz; Virginia Sheikh; Dongying Ma; Egidio Brocca-Cofano; Cristian Apetrei; Russel Tracy; Ruy M. Ribeiro; Alan Sher; Ivo M. B. Francischetti; Ivona Pandrea; Irini Sereti

Activated monocytes in blood promote chronic inflammation and persistent coagulation in HIV-infected patients and SIV-infected macaques. Curbing complications in chronic HIV HIV-infected patients who have viral suppression due to treatment are still at enhanced risk of comorbidities such as neurological or cardiovascular complications, so Schechter et al. explored how inflammation and coagulation intersect in chronic HIV. To do so, they examined monocytes that express tissue factor in samples from patients or macaques infected with SIV. These monocytes appear to be crucial to coagulopathy. Treatment with a compound isolated from tick saliva, Ixolaris, can interrupt this damaging pathway. It is possible in the future that HIV patients would be treated with Ixolaris to stem some of the side effects of chronic infection. In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. A better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidence of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.


Journal of Virology | 2015

Critical Role for the Adenosine Pathway in Controlling Simian Immunodeficiency Virus-Related Immune Activation and Inflammation in Gut Mucosal Tissues

Tianyu He; Egidio Brocca-Cofano; Delbert G. Gillespie; Cuiling Xu; Jennifer L. Stock; Dongzhu Ma; Benjamin B. Policicchio; Kevin Raehtz; Charles R. Rinaldo; Cristian Apetrei; Edwin K. Jackson; Bernard Macatangay; Ivona Pandrea

ABSTRACT The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.


Current Opinion in Virology | 2017

Modeling aging in HIV infection in nonhuman primates to address an emerging challenge of the post-ART era

Tianyu He; Elizabeth Falwell; Egidio Brocca-Cofano; Ivona Pandrea

The advent of antiretroviral therapy (ART) has dramatically improved both quality and length of life for subjects infected with human immunodeficiency virus (HIV), delaying or preventing progression to acquired immunodeficiency syndrome (AIDS). However, the virus induces aging-related changes to the immune system which confound treatment. Additionally, the normal physiologic events that occur during aging lead to deficiencies in immunity which not only exacerbate HIV pathogenesis but also trigger a variety of comorbidities. Here, the synergistic linkage between aging and HIV infection is examined in regard to the immunological and pathological mechanisms that drive both senescence and disease progression. The use of NHPs to investigate potential therapeutic strategies to control the deleterious consequences of aging with HIV infection is also reviewed.

Collaboration


Dive into the Tianyu He's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Dongzhu Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Kevin Raehtz

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiling Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kristoff

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ruy M. Ribeiro

Los Alamos National Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge