Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kevin Raehtz is active.

Publication


Featured researches published by Kevin Raehtz.


PLOS Pathogens | 2013

SIVagm Infection in Wild African Green Monkeys from South Africa: Epidemiology, Natural History, and Evolutionary Considerations

Dongzhu Ma; Anna J. Jasinska; Jan Kristoff; J. Paul Grobler; Trudy R. Turner; Yoon Jung; Christopher A. Schmitt; Kevin Raehtz; Felix Feyertag; Natalie Martinez Sosa; Viskam Wijewardana; Donald S. Burke; David Robertson; Russell P. Tracy; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

Pathogenesis studies of SIV infection have not been performed to date in wild monkeys due to difficulty in collecting and storing samples on site and the lack of analytical reagents covering the extensive SIV diversity. We performed a large scale study of molecular epidemiology and natural history of SIVagm infection in 225 free-ranging AGMs from multiple locations in South Africa. SIV prevalence (established by sequencing pol, env, and gag) varied dramatically between infant/juvenile (7%) and adult animals (68%) (p<0.0001), and between adult females (78%) and males (57%). Phylogenetic analyses revealed an extensive genetic diversity, including frequent recombination events. Some AGMs harbored epidemiologically linked viruses. Viruses infecting AGMs in the Free State, which are separated from those on the coastal side by the Drakensberg Mountains, formed a separate cluster in the phylogenetic trees; this observation supports a long standing presence of SIV in AGMs, at least from the time of their speciation to their Plio-Pleistocene migration. Specific primers/probes were synthesized based on the pol sequence data and viral loads (VLs) were quantified. VLs were of 104–106 RNA copies/ml, in the range of those observed in experimentally-infected monkeys, validating the experimental approaches in natural hosts. VLs were significantly higher (107–108 RNA copies/ml) in 10 AGMs diagnosed as acutely infected based on SIV seronegativity (Fiebig II), which suggests a very active transmission of SIVagm in the wild. Neither cytokine levels (as biomarkers of immune activation) nor sCD14 levels (a biomarker of microbial translocation) were different between SIV-infected and SIV-uninfected monkeys. This complex algorithm combining sequencing and phylogeny, VL quantification, serology, and testing of surrogate markers of microbial translocation and immune activation permits a systematic investigation of the epidemiology, viral diversity and natural history of SIV infection in wild African natural hosts.


Journal of Virology | 2012

Mucosal Simian Immunodeficiency Virus Transmission in African Green Monkeys: Susceptibility to Infection Is Proportional to Target Cell Availability at Mucosal Sites

Ivona Pandrea; Nicholas F. Parrish; Kevin Raehtz; Thaidra Gaufin; Hannah J. Barbian; Dongzhu Ma; Jan Kristoff; Rajeev Gautam; Fang Zhong; George Haret-Richter; Anita Trichel; George M. Shaw; Beatrice H. Hahn; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with a simian immunodeficiency virus (SIVagm) that is nonpathogenic in its host. Although SIVagm is common and widespread, little is known about the mechanisms that govern its transmission. Since the earliest virus-host interactions may provide key insights into the nonpathogenic phenotype of SIVagm, we developed a mucosal transmission model for this virus. Using plasma from an acutely infected AGM as the virus inoculum, we exposed adult and juvenile AGMs, as well as pigtailed macaques (PTMs) as a nonnatural host control, by mucosal routes to increasing titers of virus and compared the doses needed to establish a productive infection. Four juvenile and four adult AGMs as well as two PTMs were intrarectally (IR) exposed, while two additional adult female AGMs were intravaginally (IVAG) exposed. No animal became infected following exposure to 105 RNA copies. Both PTMs but none of the AGMs became infected following exposure to 106 RNA copies. Finally, all adult AGMs and two of the four juvenile AGMs became infected following exposure to 107 RNA copies, acquiring either one (2 IR infected juveniles, 1 IR infected adult, 2 IVAG infected adults) or two (3 IR infected adults) transmitted founder viruses. These results were consistent with immunophenotypic data, which revealed a significant correlation between the percentage of CD4+ T cells expressing CCR5 in the mucosa and the susceptibility to infection, in terms of both the viral dose and the numbers of transmitted founder viruses. Moreover, studies of uninfected AGMs showed that the fraction of CCR5-expressing CD4+ T cells increased significantly with age. These results indicate that (i) AGMs are readily infected with SIVagm by both intrarectal and intravaginal routes, (ii) susceptibility to infection is proportional to the number of available CCR5+ CD4+ target cells in the mucosa, and (iii) the paucity of CCR5+ CD4+ target cells in infant and juvenile AGMs may explain the near absence of vertical transmission.


Journal of Virology | 2014

Factors Associated with Siman Immunodeficiency Virus Transmission in a Natural African Nonhuman Primate Host in the Wild

Dongzhu Ma; Anna J. Jasinska; Felix Feyertag; Viskam Wijewardana; Jan Kristoff; Tianyu He; Kevin Raehtz; Christopher A. Schmitt; Yoon Jung; Jennifer Danzy Cramer; Michel M. Dione; Martin Antonio; Russell P. Tracy; Trudy R. Turner; David Robertson; Ivona Pandrea; Nelson B. Freimer; Cristian Apetrei

ABSTRACT African green monkeys (AGMs) are naturally infected with simian immunodeficiency virus (SIV) at high prevalence levels and do not progress to AIDS. Sexual transmission is the main transmission route in AGM, while mother-to-infant transmission (MTIT) is negligible. We investigated SIV transmission in wild AGMs to assess whether or not high SIV prevalence is due to differences in mucosal permissivity to SIV (i.e., whether the genetic bottleneck of viral transmission reported in humans and macaques is also observed in AGMs in the wild). We tested 121 sabaeus AGMs (Chlorocebus sabaeus) from the Gambia and found that 53 were SIV infected (44%). By combining serology and viral load quantitation, we identified 4 acutely infected AGMs, in which we assessed the diversity of the quasispecies by single-genome amplification (SGA) and documented that a single virus variant established the infections. We thus show that natural SIV transmission in the wild is associated with a genetic bottleneck similar to that described for mucosal human immunodeficiency virus (HIV) transmission in humans. Flow cytometry assessment of the immune cell populations did not identify major differences between infected and uninfected AGM. The expression of the SIV coreceptor CCR5 on CD4+ T cells dramatically increased in adults, being higher in infected than in uninfected infant and juvenile AGMs. Thus, the limited SIV MTIT in natural hosts appears to be due to low target cell availability in newborns and infants, which supports HIV MTIT prevention strategies aimed at limiting the target cells at mucosal sites. Combined, (i) the extremely high prevalence in sexually active AGMs, (ii) the very efficient SIV transmission in the wild, and (iii) the existence of a fraction of multiparous females that remain uninfected in spite of massive exposure to SIV identify wild AGMs as an acceptable model of exposed, uninfected individuals. IMPORTANCE We report an extensive analysis of the natural history of SIVagm infection in its sabaeus monkey host, the African green monkey species endemic to West Africa. Virtually no study has investigated the natural history of SIV infection in the wild. The novelty of our approach is that we report for the first time that SIV infection has no discernible impact on the major immune cell populations in natural hosts, thus confirming the nonpathogenic nature of SIV infection in the wild. We also focused on the correlates of SIV transmission, and we report, also for the first time, that SIV transmission in the wild is characterized by a major genetic bottleneck, similar to that described for HIV-1 transmission in humans. Finally, we report here that the restriction of target cell availability is a major correlate of the lack of SIV transmission to the offspring in natural hosts of SIVs.


PLOS Pathogens | 2016

Multi-dose Romidepsin Reactivates Replication Competent SIV in Post-antiretroviral Rhesus Macaque Controllers

Benjamin B. Policicchio; Cuiling Xu; Egidio Brocca-Cofano; Kevin Raehtz; Tianyu He; Dongzhu Ma; Hui Li; Ranjit Sivanandham; George Haret-Richter; Tammy Dunsmore; Anita Trichel; John W. Mellors; Beatrice H. Hahn; George M. Shaw; Ruy M. Ribeiro; Ivona Pandrea; Cristian Apetrei

Viruses that persist despite seemingly effective antiretroviral treatment (ART) and can reinitiate infection if treatment is stopped preclude definitive treatment of HIV-1 infected individuals, requiring lifelong ART. Among strategies proposed for targeting these viral reservoirs, the premise of the “shock and kill” strategy is to induce expression of latent proviruses [for example with histone deacetylase inhibitors (HDACis)] resulting in elimination of the affected cells through viral cytolysis or immune clearance mechanisms. Yet, ex vivo studies reported that HDACis have variable efficacy for reactivating latent proviruses, and hinder immune functions. We developed a nonhuman primate model of post-treatment control of SIV through early and prolonged administration of ART and performed in vivo reactivation experiments in controller RMs, evaluating the ability of the HDACi romidepsin (RMD) to reactivate SIV and the impact of RMD treatment on SIV-specific T cell responses. Ten RMs were IV-infected with a SIVsmmFTq transmitted-founder infectious molecular clone. Four RMs received conventional ART for >9 months, starting from 65 days post-infection. SIVsmmFTq plasma viremia was robustly controlled to <10 SIV RNA copies/mL with ART, without viral blips. At ART cessation, initial rebound viremia to ~106 copies/mL was followed by a decline to < 10 copies/mL, suggesting effective immune control. Three post-treatment controller RMs received three doses of RMD every 35–50 days, followed by in vivo experimental depletion of CD8+ cells using monoclonal antibody M-T807R1. RMD was well-tolerated and resulted in a rapid and massive surge in T cell activation, as well as significant virus rebounds (~104 copies/ml) peaking at 5–12 days post-treatment. CD8+ cell depletion resulted in a more robust viral rebound (107 copies/ml) that was controlled upon CD8+ T cell recovery. Our results show that RMD can reactivate SIV in vivo in the setting of post-ART viral control. Comparison of the patterns of virus rebound after RMD administration and CD8+ cell depletion suggested that RMD impact on T cells is only transient and does not irreversibly alter the ability of SIV-specific T cells to control the reactivated virus.


Journal of Immunology | 2016

Cutting Edge: T Regulatory Cell Depletion Reactivates Latent Simian Immunodeficiency Virus (SIV) in Controller Macaques While Boosting SIV-Specific T Lymphocytes

Tianyu He; Egidio Brocca-Cofano; Benjamin B. Policicchio; Ranjit Sivanandham; Rajeev Gautam; Kevin Raehtz; Cuiling Xu; Ivona Pandrea; Cristian Apetrei

T regulatory cells (Tregs) are critical in shaping the latent HIV/SIV reservoir, as they are preferentially infected, reverse CD4+ T cell activation status, and suppress CTL responses. To reactivate latent virus and boost cell-mediated immune responses, we performed in vivo Treg depletion with Ontak (denileukin diftitox) in two SIVsab-infected controller macaques. Ontak induced significant (>75%) Treg depletion and major CD4+ T cell activation, and only minimally depleted CD8+ T cells. The overall ability of Tregs to control immune responses was significantly impaired despite their incomplete depletion, resulting in both reactivation of latent virus (virus rebound to 103 viral RNA copies/ml plasma in the absence of antiretroviral therapy) and a significant boost of SIV-specific CD8+ T cell frequency, with rapid clearance of reactivated virus. As none of the latency-reversing agents in development have such dual activity, our strategy holds great promise for cure research.


Science Translational Medicine | 2017

Inflammatory monocytes expressing tissue factor drive SIV and HIV coagulopathy

Melissa E. Schechter; Bruno B. Andrade; Tianyu He; George Haret Richter; Kevin W. Tosh; Benjamin B. Policicchio; Amrit Singh; Kevin Raehtz; Virginia Sheikh; Dongying Ma; Egidio Brocca-Cofano; Cristian Apetrei; Russel Tracy; Ruy M. Ribeiro; Alan Sher; Ivo M. B. Francischetti; Ivona Pandrea; Irini Sereti

Activated monocytes in blood promote chronic inflammation and persistent coagulation in HIV-infected patients and SIV-infected macaques. Curbing complications in chronic HIV HIV-infected patients who have viral suppression due to treatment are still at enhanced risk of comorbidities such as neurological or cardiovascular complications, so Schechter et al. explored how inflammation and coagulation intersect in chronic HIV. To do so, they examined monocytes that express tissue factor in samples from patients or macaques infected with SIV. These monocytes appear to be crucial to coagulopathy. Treatment with a compound isolated from tick saliva, Ixolaris, can interrupt this damaging pathway. It is possible in the future that HIV patients would be treated with Ixolaris to stem some of the side effects of chronic infection. In HIV infection, persistent inflammation despite effective antiretroviral therapy is linked to increased risk of noninfectious chronic complications such as cardiovascular and thromboembolic disease. A better understanding of inflammatory and coagulation pathways in HIV infection is needed to optimize clinical care. Markers of monocyte activation and coagulation independently predict morbidity and mortality associated with non-AIDS events. We identified a specific subset of monocytes that express tissue factor (TF), persist after virological suppression, and trigger the coagulation cascade by activating factor X. This subset of monocytes expressing TF had a distinct gene signature with up-regulated innate immune markers and evidence of robust production of multiple proinflammatory cytokines, including interleukin-1β (IL-1β), tumor necrosis factor–α (TNF-α), and IL-6, ex vivo and in vitro upon lipopolysaccharide stimulation. We validated our findings in a nonhuman primate model, showing that TF-expressing inflammatory monocytes were associated with simian immunodeficiency virus (SIV)–related coagulopathy in the progressive [pigtail macaques (PTMs)] but not in the nonpathogenic (African green monkeys) SIV infection model. Last, Ixolaris, an anticoagulant that inhibits the TF pathway, was tested and potently blocked functional TF activity in vitro in HIV and SIV infection without affecting monocyte responses to Toll-like receptor stimulation. Strikingly, in vivo treatment of SIV-infected PTMs with Ixolaris was associated with significant decreases in D-dimer and immune activation. These data suggest that TF-expressing monocytes are at the epicenter of inflammation and coagulation in chronic HIV and SIV infection and may represent a potential therapeutic target.


Journal of Virology | 2015

Critical Role for the Adenosine Pathway in Controlling Simian Immunodeficiency Virus-Related Immune Activation and Inflammation in Gut Mucosal Tissues

Tianyu He; Egidio Brocca-Cofano; Delbert G. Gillespie; Cuiling Xu; Jennifer L. Stock; Dongzhu Ma; Benjamin B. Policicchio; Kevin Raehtz; Charles R. Rinaldo; Cristian Apetrei; Edwin K. Jackson; Bernard Macatangay; Ivona Pandrea

ABSTRACT The role of the adenosine (ADO) pathway in human immunodeficiency virus type 1/simian immunodeficiency virus (HIV-1/SIV) infection remains unclear. We compared SIVsab-induced changes of markers related to ADO production (CD39 and CD73) and breakdown (CD26 and adenosine deaminase) on T cells from blood, lymph nodes, and intestine collected from pigtailed macaques (PTMs) and African green monkeys (AGMs) that experience different SIVsab infection outcomes. We also measured ADO and inosine (INO) levels in tissues by mass spectrometry. Finally, we assessed the suppressive effect of ADO on proinflammatory cytokine production after T cell receptor stimulation. The baseline level of both CD39 and CD73 coexpression on regulatory T cells and ADO levels were higher in AGMs than in PTMs. Conversely, high INO levels associated with dramatic increases in CD26 expression and adenosine deaminase activity were observed in PTMs during chronic SIV infection. Immune activation and inflammation markers in the gut and periphery inversely correlated with ADO and directly correlated with INO. Ex vivo administration of ADO significantly suppressed proinflammatory cytokine production by T cells in both species. In conclusion, the opposite dynamics of ADO pathway-related markers and contrasting ADO/INO levels in species with divergent proinflammatory responses to SIV infection support a key role of ADO in controlling immune activation/inflammation in nonprogressive SIV infections. Changes in ADO levels predominately occurred in the gut, suggesting that the ADO pathway may be involved in sparing natural hosts of SIVs from developing SIV-related gut dysfunction. Focusing studies of the ADO pathway on mucosal sites of viral replication is warranted. IMPORTANCE The mechanisms responsible for the severe gut dysfunction characteristic of progressive HIV and SIV infection in humans and macaques are not completely elucidated. We report that ADO may play a key role in controlling immune activation/inflammation in nonprogressive SIV infections by limiting SIV-related gut inflammation. Conversely, in progressive SIV infection, significant degradation of ADO occurs, possibly due to an early increase of ADO deaminase complexing protein 2 (CD26) and adenosine deaminase. Our study supports therapeutic interventions to offset alterations of this pathway during progressive HIV/SIV infections. These potential approaches to control chronic immune activation and inflammation during pathogenic SIV infection may prevent HIV disease progression.


Infection, Genetics and Evolution | 2016

The well-tempered SIV infection: Pathogenesis of SIV infection in natural hosts in the wild, with emphasis on virus transmission and early events post-infection that may contribute to protection from disease progression

Kevin Raehtz; Ivona Pandrea; Cristian Apetrei

African NHPs are infected by over 40 different simian immunodeficiency viruses. These viruses have coevolved with their hosts for long periods of time and, unlike HIV in humans, infection does not generally lead to disease progression. Chronic viral replication is maintained for the natural lifespan of the host, without loss of overall immune function. Lack of disease progression is not correlated with transmission, as SIV infection is highly prevalent in many African NHP species in the wild. The exact mechanisms by which these natural hosts of SIV avoid disease progression are still unclear, but a number of factors might play a role, including: (i) avoidance of microbial translocation from the gut lumen by preventing or repairing damage to the gut epithelium; (ii) control of immune activation and apoptosis following infection; (iii) establishment of an anti-inflammatory response that resolves chronic inflammation; (iv) maintenance of homeostasis of various immune cell populations, including NK cells, monocytes/macrophages, dendritic cells, Tregs, Th17 T-cells, and γδ T-cells; (v) restriction of CCR5 availability at mucosal sites; (vi) preservation of T-cell function associated with down-regulation of CD4 receptor. Some of these mechanisms might also be involved in protection of natural hosts from mother-to-infant SIV transmission during breastfeeding. The difficulty of performing invasive studies in the wild has prohibited investigation of the exact events surrounding transmission in natural hosts. Increased understanding of the mechanisms of SIV transmission in natural hosts, and of the early events post-transmission which may contribute to avoidance of disease progression, along with better comprehension of the factors involved in protection from SIV breastfeeding transmission in the natural hosts, could prove invaluable for the development of new prevention strategies for HIV.


Journal of Virology | 2018

Marginal Effects of Systemic CCR5 Blockade with Maraviroc on Oral Simian Immunodeficiency Virus Transmission to Infant Macaques

Egidio Brocca-Cofano; Cuiling Xu; Katherine S. Wetzel; Mackenzie L. Cottrell; Benjamin B. Policicchio; Kevin Raehtz; Dongzhu Ma; Tammy Dunsmore; George Haret-Richter; Karam Musaitif; Brandon F. Keele; Angela D. M. Kashuba; Ronald G. Collman; Ivona Pandrea; Cristian Apetrei


The 83rd Annual Meeting of the American Association of Physical Anthropologists, Calgary, Alberta Canada | 2014

Pathogenesis of SIVagm infection in wild African Green Monkeys

Cristian Apetrei; Dongzhu Ma; Anna Jassinska; Jan Kristoff; J. Paul Grobler; Martin Antonio; Yoon Jung; Christopher A Schmitt; Kevin Raehtz; Felix Feyertag; Viskam Wijevardana; David Robertson; Russell P. Tracy; Ivona Pandrea; Nelson B Freimer

Collaboration


Dive into the Kevin Raehtz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivona Pandrea

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Dongzhu Ma

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Tianyu He

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Kristoff

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Cuiling Xu

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Yoon Jung

University of California

View shared research outputs
Top Co-Authors

Avatar

Felix Feyertag

University of Manchester

View shared research outputs
Researchain Logo
Decentralizing Knowledge