Douglas C. Leonard
San Diego State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Douglas C. Leonard.
Nature | 1999
J. S. Bloom; S. R. Kulkarni; S. G. Djorgovski; A.C. Eichelberger; Patrick Cote; John P. Blakeslee; S. C. Odewahn; Fiona A. Harrison; Dale A. Frail; A. V. Filippenko; Douglas C. Leonard; Adam G. Riess; Hyron Spinrad; D. Stern; Andrew J. Bunker; Arjun Dey; B. Grossan; S. Perlmutter; R. A. Knop; I. M. Hook; M. Feroci
Cosmic γ-ray bursts have now been firmly established as one of the most powerful phenomena in the Universe, releasing almost the rest-mass energy of a neutron star within the space of a few seconds (ref. 1). The two most popular models to explain γ-ray bursts are the coalescence of two compact objects such as neutron stars or black holes, or the catastrophic collapse of a massive star in a very energetic supernova-like explosion. Here we show that, about three weeks after the γ-ray burst of 26 March 1998, the transient optical source associated with the burst brightened to about 60 times the expected flux, based upon an extrapolation of the initial light curve. Moreover, the spectrum changed dramatically, with the colour becoming extremely red. We argue that the new source is an underlying supernova. If our hypothesis is true then this provides evidence linking cosmologically located γ-ray bursts with deaths of massive stars.Palomar Observatory 105-24, Caltech, Pasadena, CA 91125, USA National Radio Astronomy Observatory, P. O. Box O, Socorro, NM 87801, USA Department of Astronomy, University of California, Berkeley, CA 94720-3411 USA National Optical Astronomy Observatories, 950 N. Cherry, Ave. Tucson, AZ 85719, USA Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 7000 East Avenue, P. O. Box 808, L-413, Livermore, CA 94551-9900, USA Center for Particle Astrophysics, University of California, Berkeley, CA 94720 USA Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA European Southern Observatory, D-85748 Garching, Germany Istituto di Astrofisica Spaziale, CNR, via Fosso del Cavaliere, Roma I-00133, Italy
Science | 2007
Ferdinando Patat; P. Chandra; Roger A. Chevalier; Stephen Justham; Ph. Podsiadlowski; C. Wolf; A. Gal-Yam; L. Pasquini; Ian A. Crawford; Paolo A. Mazzali; A.W.A. Pauldrach; K. Nomoto; Stefano Benetti; Enrico Cappellaro; N. Elias-Rosa; W. Hillebrandt; Douglas C. Leonard; Andrea Pastorello; A. Renzini; F. Sabbadin; J. D. Simon; M. Turatto
Type Ia supernovae are important cosmological distance indicators. Each of these bright supernovae supposedly results from the thermonuclear explosion of a white dwarf star that, after accreting material from a companion star, exceeds some mass limit, but the true nature of the progenitor star system remains controversial. Here we report the spectroscopic detection of circumstellar material in a normal type Ia supernova explosion. The expansion velocities, densities, and dimensions of the circumstellar envelope indicate that this material was ejected from the progenitor system. In particular, the relatively low expansion velocities suggest that the white dwarf was accreting material from a companion star that was in the red-giant phase at the time of the explosion.
Nature | 2005
Edo Berger; Paul A. Price; S. B. Cenko; Avishay Gal-Yam; Alicia M. Soderberg; Mansi M. Kasliwal; Douglas C. Leonard; P. B. Cameron; Dale A. Frail; S. R. Kulkarni; D W Murphy; Wojtek Krzeminski; Tsvi Piran; Brian Leverett Lee; K C Roth; D.-S. Moon; Derek B. Fox; Fiona A. Harrison; S. E. Persson; Brian Paul Schmidt; Bryan E. Penprase; Joshua Rich; Bruce A. Peterson; L. L. Cowie
Despite a rich phenomenology, γ-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness—the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 1051 erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10–1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.
Nature | 2006
Avishay Gal-Yam; Derek B. Fox; P. Price; Eran O. Ofek; M. Davis; Douglas C. Leonard; Alicia M. Soderberg; Brian Paul Schmidt; Karen Lewis; Bruce A. Peterson; S. R. Kulkarni; Edo Berger; S. B. Cenko; Re'em Sari; K. Sharon; Dale A. Frail; D.-S. Moon; Peter J. Brown; Antonino Cucchiara; Fiona A. Harrison; Tsvi Piran; S. Persson; Patrick J. McCarthy; Bryan E. Penprase; Roger A. Chevalier; Andrew I. MacFadyen
Over the past decade, our physical understanding of γ-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (≳2 s) GRBs are associated with the explosive deaths of massive stars (‘collapsars’, ref. 1), which produce accompanying supernovae; the short-duration (≲2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration ∼100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of ‘engine’, as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.
The Astrophysical Journal | 2007
Avishay Gal-Yam; Douglas C. Leonard; Derek B. Fox; S. B. Cenko; Alicia M. Soderberg; D.-S. Moon; David J. Sand; Weidong Li; Alexei V. Filippenko; G. Aldering; Yannick Copin
We present a study of the Type IIn supernova (SN) 2005gl, in the relatively nearby (d ≈ 66 Mpc) galaxy NGC 266. Photometry and spectroscopy of the SN indicate that it is a typical member of its class. Pre-explosion Hubble Space Telescope (HST) imaging of the location of the SN, along with a precise localization of this event using the laser guide star assisted adaptive optics (LGS-AO) system at Keck Observatory, are combined to identify a luminous (M_V = -10.3 mag) point source as the possible progenitor of SN 2005gl. If the source is indeed a single star, it was likely a member of the class of luminous blue variable stars (LBVs). This finding leads us to consider the possible general association of SNe IIn with LBV progenitors; it is indeed supported by observations of other SNe, and the known properties of LBV stars. For example, we argue that should the prototypical Galactic LBV η Carina explode in a phase similar to its current state, it will likely produce a SN IIn. We discuss our findings in the context of current ideas about the evolution of massive stars and review the census of SNe with identified progenitors. The concept of the progenitor-SN map is introduced as a convenient means to discuss the present status and future prospects of direct searches for SN progenitors. We conclude that this field has matured considerably in recent years, and the transition from anecdotal information about rare single events to robust associations of progenitor classes with specific SN types has already begun.
Publications of the Astronomical Society of the Pacific | 2002
Douglas C. Leonard; Alexei V. Filippenko; Elinor L. Gates; Weidong Li; Ronald G. Eastman; Aaron J. Barth; Schelte John Bus; Ryan Chornock; Alison L. Coil; Sabine Frink; Carol A. Grady; Alan W. Harris; Matthew A. Malkan; Thomas Matheson; Andreas Quirrenbach; Richard R. Treffers
ABSTRACT We present 30 optical spectra and 49 photometric epochs sampling the first 517 days after discovery of supernova (SN) 1999em and derive its distance through the expanding photosphere method (EPM). SN 1999em is shown to be a Type II‐plateau (II‐P) event, with a photometric plateau lasting until about 100 days after explosion. We identify the dominant ions responsible for most of the absorption features seen in the optical portion of the spectrum during the plateau phase. Using the weakest unblended absorption features to estimate photospheric velocity, we find the distance to SN 1999em to be \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfon...
The Astrophysical Journal | 2003
Thomas Matheson; Peter Marcus Garnavich; Krzysztof Zbigniew Stanek; D. F. Bersier; Stephen T. Holland; Kevin Krisciunas; Nelson Caldwell; Perry L. Berlind; J. S. Bloom; Michael Bolte; A. Z. Bonanos; Michael J. I. Brown; Warren R. Brown; M. Calkins; Peter M. Challis; Ryan Chornock; L. Echevarria; Daniel J. Eisenstein; Mark E. Everett; A. V. Filippenko; K. Flint; Ryan J. Foley; D. L. Freedman; Mario Hamuy; Paul Harding; Nimish P. Hathi; Malcolm Stuart Hicken; Charles G. Hoopes; C. D. Impey; Buell T. Jannuzi
We present extensive optical and infrared photometry of the afterglow of gamma-ray burst (GRB) 030329 and its associated supernova (SN) 2003dh over the first two months after detection (2003 March 30-May 29 UT). Optical spectroscopy from a variety of telescopes is shown and, when combined with the photometry, allows an unambiguous separation between the afterglow and SN contributions. The optical afterglow of the GRB is initially a power-law continuum but shows significant color variations during the first week that are unrelated to the presence of an SN. The early afterglow light curve also shows deviations from the typical power-law decay. An SN spectrum is first detectable ~7 days after the burst and dominates the light after ~11 days. The spectral evolution and the light curve are shown to closely resemble those of SN 1998bw, a peculiar Type Ic SN associated with GRB 980425, and the time of the SN explosion is close to the observed time of the GRB. It is now clear that at least some GRBs arise from core-collapse SNe.
Nature | 2010
Hagai B. Perets; Avishay Gal-Yam; Paolo A. Mazzali; D Arnett; D Kagan; A. V. Filippenko; Wen Li; Iair Arcavi; S. B. Cenko; Derek B. Fox; Douglas C. Leonard; Dae-Sik Moon; David J. Sand; Alicia M. Soderberg; J. P. Anderson; P. A. James; Ryan J. Foley; Mohan Ganeshalingam; Eran O. Ofek; Lars Bildsten; Gijs Nelemans; K. J Shen; Nevin N. Weinberg; Brian D. Metzger; A.L. Piro; Eliot Quataert; M Kiewe; Dovi Poznanski
Supernovae are thought to arise from two different physical processes. The cores of massive, short-lived stars undergo gravitational core collapse and typically eject a few solar masses during their explosion. These are thought to appear as type Ib/c and type II supernovae, and are associated with young stellar populations. In contrast, the thermonuclear detonation of a carbon-oxygen white dwarf, whose mass approaches the Chandrasekhar limit, is thought to produce type Ia supernovae. Such supernovae are observed in both young and old stellar environments. Here we report a faint type Ib supernova, SN 2005E, in the halo of the nearby isolated galaxy, NGC 1032. The ‘old’ environment near the supernova location, and the very low derived ejected mass (∼0.3 solar masses), argue strongly against a core-collapse origin. Spectroscopic observations and analysis reveal high ejecta velocities, dominated by helium-burning products, probably excluding this as a subluminous or a regular type Ia supernova. We conclude that it arises from a low-mass, old progenitor, likely to have been a helium-accreting white dwarf in a binary. The ejecta contain more calcium than observed in other types of supernovae and probably large amounts of radioactive 44Ti.
Science | 2011
Assaf Sternberg; Avishay Gal-Yam; J. D. Simon; Douglas C. Leonard; Robert Michael Quimby; Mark M. Phillips; Nidia I. Morrell; Ian B. Thompson; Inese I. Ivans; J. L. Marshall; A. V. Filippenko; G. W. Marcy; J. S. Bloom; Ferdinando Patat; Ryan J. Foley; D. Yong; Bryan E. Penprase; Daniel Jay Beeler; C. Allende Prieto; Guy S. Stringfellow
Most of the progenitors of type Ia supernovae in nearby spiral galaxies may be white dwarf−normal star binary systems. Type Ia supernovae are key tools for measuring distances on a cosmic scale. They are generally thought to be the thermonuclear explosion of an accreting white dwarf in a close binary system. The nature of the mass donor is still uncertain. In the single-degenerate model it is a main-sequence star or an evolved star, whereas in the double-degenerate model it is another white dwarf. We show that the velocity structure of absorbing material along the line of sight to 35 type Ia supernovae tends to be blueshifted. These structures are likely signatures of gas outflows from the supernova progenitor systems. Thus, many type Ia supernovae in nearby spiral galaxies may originate in single-degenerate systems.
Publications of the Astronomical Society of the Pacific | 2003
Ryan J. Foley; M. Papenkova; Brandon J. Swift; Alexei V. Filippenko; Weidong Li; Paolo A. Mazzali; Ryan Chornock; Douglas C. Leonard; Schuyler D. Van Dyk
ABSTRACT We present optical photometric and spectral data of the peculiar Type Ic supernova SN 2002ap. Photometric coverage includes UBVRI bands from 2002 January 30, the day after discovery, through 2002 December 12. There are five early‐time spectra and eight in the nebular phase. We determine that SN 2002ap is similar to SN 1997ef and the gamma‐ray burst–associated SN 1998bw with respect to spectral and photometric characteristics. The nebular spectra of SN 2002ap present the largest Mg i] λ4571 to [O i] λλ6300, 6364 ratio of any supernova spectra yet published, suggesting that the progenitor of SN 2002ap was a highly stripped star. Comparing the nebular spectra of SN 1985F and SN 2002ap, we notice several similar features, casting the classification of SN 1985F as a normal Type Ib supernova in doubt. We also present nebular modeling of SN 2002ap and find that the object ejected ≳1.5 M⊙ of material within the outer velocity shell of the nebula (∼5500 km s−1) and synthesized ∼0.09 M⊙ of 56Ni.