Frank Malgioglio
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frank Malgioglio.
international solid-state circuits conference | 2011
James D. Warnock; Yuen Chan; William V. Huott; Sean M. Carey; Michael Fee; Huajun Wen; M. J. Saccamango; Frank Malgioglio; Patrick J. Meaney; Donald W. Plass; Yuen H. Chan; Mark D. Mayo; Guenter Mayer; Leon J. Sigal; David L. Rude; Robert M. Averill; Michael H. Wood; Thomas Strach; Howard H. Smith; Brian W. Curran; Eric M. Schwarz; Lee Evan Eisen; Doug Malone; Steve Weitzel; Pak-Kin Mak; Thomas J. McPherson; Charles F. Webb
The microprocessor chip for the IBM zEnterprise 196 (z 196) system is a high-frequency, high-performance design that adds support for out-of-order instruction execution and increases operating frequency by almost 20% compared to the previous 65nm design, while still fitting within the same power envelope. Despite the many difficult engineering hurdles to be overcome, the design team was able to achieve a product frequency of 5.2GHz, providing a significant performance boost for the new system.
IEEE Journal of Solid-state Circuits | 2012
James D. Warnock; Yiu-Hing Chan; Sean M. Carey; Huajun Wen; Patrick J. Meaney; Guenter Gerwig; Howard H. Smith; Yuen H. Chan; John S. Davis; Paul A. Bunce; Antonio R. Pelella; Daniel Rodko; Pradip Patel; Thomas Strach; Doug Malone; Frank Malgioglio; José Luis Neves; David L. Rude; William V. Huott
This paper describes the circuit and physical design features of the z196 processor chip, implemented in a 45 nm SOI technology. The chip contains 4 super-scalar, out-of-order processor cores, running at 5.2 GHz, on a die with an area of 512 mm2 containing an estimated 1.4 billion transistors. The core and chip design methodology and specific design features are presented, focusing on techniques used to enable high-frequency operation. In addition, chip power, IR drop, and supply noise are discussed, being key design focus areas. The chips ground-breaking RAS features are also described, engineered for maximum reliability and system stability.
international conference on ic design and technology | 2014
Joshua Friedrich; Hung Q. Le; William J. Starke; Jeff Stuechli; Balaram Sinharoy; Eric Fluhr; Daniel M. Dreps; Victor Zyuban; Gregory Scott Still; Christopher J. Gonzalez; David Hogenmiller; Frank Malgioglio; Ryan Nett; Ruchir Puri; Phillip J. Restle; David Shan; Zeynep Toprak Deniz; Dieter Wendel; Matthew M. Ziegler; Dave Victor
POWER8™ delivers a data-optimized design suited for analytics, cognitive workloads, and todays exploding data sizes. The design point results in a 2.5x performance gain over its predecessor, POWER7+™, for many workloads. In addition, POWER8 delivers the efficiency demanded by cloud computing models and also represents a first step toward creating an open ecosystem for server innovation.
international solid-state circuits conference | 2015
James D. Warnock; Brian W. Curran; John Badar; Gregory J. Fredeman; Donald W. Plass; Yuen H. Chan; Sean M. Carey; Gerard M. Salem; Friedrich Schroeder; Frank Malgioglio; Guenter Mayer; Christopher J. Berry; Michael H. Wood; Yiu-Hing Chan; Mark D. Mayo; John Mack Isakson; Charudhattan Nagarajan; Tobias Werner; Leon J. Sigal; Ricardo H. Nigaglioni; Mark Cichanowski; Jeffrey A. Zitz; Matthew M. Ziegler; Tim Bronson; Gerald Strevig; Daniel M. Dreps; Ruchir Puri; Douglas J. Malone; Dieter Wendel; Pak-Kin Mak
The next-generation System z design introduces a new microprocessor chip (CP) and a system controller chip (SC) aimed at providing a substantial boost to maximum system capacity and performance compared to the previous zEC12 design in 32nm [1,2]. As shown in the die photo, the CP chip includes 8 high-frequency processor cores, 64MB of eDRAM L3 cache, interface IOs (“XBUS”) to connect to two other processor chips and the L4 cache chip, along with memory interfaces, 2 PCIe Gen3 interfaces, and an I/O bus controller (GX). The design is implemented on a 678 mm2 die with 4.0 billion transistors and 17 levels of metal interconnect in IBMs high-performance 22nm high-x CMOS SOI technology [3]. The SC chip is also a 678 mm2 die, with 7.1 billion transistors, running at half the clock frequency of the CP chip, in the same 22nm technology, but with 15 levels of metal. It provides 480 MB of eDRAM L4 cache, an increase of more than 2× from zEC12 [1,2], and contains an 18 MB eDRAM L4 directory, along with multi-processor cache control/coherency logic to manage inter-processor and system-level communications. Both the CP and SC chips incorporate significant logical, physical, and electrical design innovations.
international solid-state circuits conference | 2014
Eric Fluhr; Joshua Friedrich; Daniel M. Dreps; Victor Zyuban; Gregory Scott Still; Christopher J. Gonzalez; Allen Hall; David Hogenmiller; Frank Malgioglio; Ryan Nett; Jose Angel Paredes; Juergen Pille; Donald W. Plass; Ruchir Puri; Phillip J. Restle; David Shan; Kevin Stawiasz; Zeynep Toprak Deniz; Dieter Wendel; Matt Ziegler
The 12-core 649mm2 POWER8™ leverages IBMs 22nm eDRAM SOI technology [1], and microarchitectural enhancements to deliver up to 2.5× the socket performance [2] of its 32nm predecessor, POWER7+™ [3]. POWER8 contains 4.2B transistors and 31.5μF of deep-trench decoupling capacitance. Three thin-oxide transistor Vts are used for power/performance tuning, and thick-oxide transistors enable high-voltage I/O and analog designs. The 15-layer BEOL contains 5-80nm, 2-144nm, 3-288nm, and 3-640nm pitch layers for low-latency communication as well as 2-2400nm ultra-thick-metal (UTM) pitch layers for low-resistance distribution of power and clocks.
international solid-state circuits conference | 1999
Paul R. Turgeon; Pak-Kin Mak; Donald W. Plass; Michael A. Blake; Michael Fee; M. Fischer; Carl B. Ford; G. Holmes; Kathryn M. Jackson; Christine C. Jones; Kevin W. Kark; Frank Malgioglio; Patrick J. Meaney; E. Pell; W. Scarpero; A.R. Seigler; William Wu Shen; Gary E. Strait; Gary Alan VanHuben; G. Wellwood; A. Zuckerman
Although a microprocessors maximum frequency and internal design are important, the storage hierarchy is the primary reason for the large system performance improvement of the S/390 G5 compared to the G4. The improvement is achieved with an L2 cache, system controller and memory interface clocked at 1/4 the microprocessor frequency.
international conference on ic design and technology | 2011
Huajun Wen; James D. Warnock; Yiu-Hing Chan; Guenter Mayer; B. Truong; Thomas Strach; Timothy J. Slegel; Sean M. Carey; Gerard M. Salem; Frank Malgioglio; Douglas J. Malone; Donald W. Plass; Brian W. Curran; Yuen H. Chan; Mark D. Mayo; William V. Huott; Pak-Kin Mak
The IBM zEnterprise z196 processor chip is an energy efficient high-frequency, high-performance design that implements 4 processor cores optimized for maximum single-thread performance. Chip energy efficiency is improved by 25% compared to the previous 65nm design, which enables the processor chip to run at product frequency of 5.2 GHz, providing a significant performance boost for the z196 system. This paper discusses the enablement of a high frequency and high performance design with a focus on energy consumption challenges and solutions. Design tradeoffs for processor speed, performance and energy consumption were optimized during project concept phase and practiced through detailed implementation stages on all aspects of the processor design. Various high speed circuit techniques were deployed to achieve the high frequency goal and improve overall energy efficiency. A comprehensive power methodology was developed to calculate leakage and dynamic power dissipation at various workloads. Sustained thermal power as well as instantaneous peak power was analyzed and worked on throughout the entire design process. The final design stays within the system power constraints and achieves a 5.2Ghz product frequency.
symposium on cloud computing | 2008
Di Phan; Christopher J. Berry; Frank Malgioglio; Alan P. Wagstaff
This paper reports on a highly effective chip power grid physical implementation method that was applied to a high-performance multi-voltage multi-core processor. The complete chip power build process was automated to prevent flagrant power connection issues and to provide great savings in the overall design cycle.
Archive | 2008
Frank Malgioglio; Christopher J. Berry
Archive | 2008
Frank Malgioglio; Adam R. Jatkowski; Brian A. Lasseter; Joseph J. Palumbo