Helen L. Leavis
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Helen L. Leavis.
Journal of Bacteriology | 2004
Helen L. Leavis; Janetta Top; Nathan Shankar; Katrine Borgen; Marc J. M. Bonten; Jan D. A. van Embden; Rob J. L. Willems
Enterococcus faecalis harbors a virulence-associated surface protein encoded by the esp gene. This gene has been shown to be part of a 150-kb putative pathogenicity island. A gene similar to esp has recently been found in Enterococcus faecium isolates recovered from hospitalized patients. In the present study we analyzed the polymorphism in the esp gene of E. faecium, and we investigated the association of esp with neighboring chromosomal genes. The esp gene showed considerable sequence heterogeneity in the regions encoding the nonrepeat N- and C-terminal domains of the Esp protein as well as differences in the number of repeats. DNA sequencing of chromosomal regions flanking the esp gene of E. faecium revealed seven open reading frames, representing putative genes implicated in virulence, regulation of transcription, and antibiotic resistance. These flanking regions were invariably associated with the presence or absence of the esp gene in E. faecium, indicating that esp in E. faecium is part of a distinct genetic element. Because of the presence of virulence genes in this gene cluster, the lower G+C content relative to that of the genome, and the presence of esp in E. faecium isolates associated with nosocomial outbreaks and clinically documented infections, we conclude that this genetic element constitutes a putative pathogenicity island, the first one described in E. faecium. Except for the presence of esp and araC, this pathogenicity island is completely different from the esp-containing pathogenicity island previously disclosed in E. faecalis.
PLOS Pathogens | 2007
Helen L. Leavis; Rob J. L. Willems; Willem Jan Bastiaan Van Wamel; Frank Schuren; Martien P. M. Caspers; Marc J. M. Bonten
Enterococcus faecium, an ubiquous colonizer of humans and animals, has evolved in the last 15 years from an avirulent commensal to the third most frequently isolated nosocomial pathogen among intensive care unit patients in the United States. E. faecium combines multidrug resistance with the potential of horizontal resistance gene transfer to even more pathogenic bacteria. Little is known about the evolution and virulence of E. faecium, and genomic studies are hampered by the absence of a completely annotated genome sequence. To further unravel its evolution, we used a mixed whole-genome microarray and hybridized 97 E. faecium isolates from different backgrounds (hospital outbreaks (n = 18), documented infections (n = 34) and asymptomatic carriage of hospitalized patients (n = 15), and healthy persons (n = 15) and animals (n = 21)). Supported by Bayesian posterior probabilities (PP = 1.0), a specific clade containing all outbreak-associated strains and 63% of clinical isolates was identified. Sequencing of 146 of 437 clade-specific inserts revealed mobile elements (n = 74), including insertion sequence (IS) elements (n = 42), phage genes (n = 6) and plasmid sequences (n = 26), hypothetical (n = 58) and membrane proteins (n = 10), and antibiotic resistance (n = 9) and regulatory genes (n = 11), mainly located on two contigs of the unfinished E. faecium DO genome. Split decomposition analysis, varying guanine cytosine content, and aberrant codon adaptation indices all supported acquisition of these genes through horizontal gene transfer with IS16 as the predicted most prominent insert (98% sensitive, 100% specific). These findings suggest that acquisition of IS elements has facilitated niche adaptation of a distinct E. faecium subpopulation by increasing its genome plasticity. Increased genome plasticity was supported by higher diversity indices (ratio of average genetic similarities of pulsed-field gel electrophoresis and multi locus sequence typing) for clade-specific isolates. Interestingly, the previously described multi locus sequence typing–based clonal complex 17 largely overlapped with this clade. The present data imply that the global emergence of E. faecium, as observed since 1990, represents the evolution of a subspecies with a presumably better adaptation than other E. faecium isolates to the constraints of a hospital environment.
Mbio | 2012
Rob J. L. Willems; Janetta Top; Willem van Schaik; Helen L. Leavis; Marc J. M. Bonten; Jukka Sirén; William P. Hanage; Jukka Corander
ABSTRACT Enterococcus faecium has recently emerged as an important multiresistant nosocomial pathogen. Defining population structure in this species is required to provide insight into the existence, distribution, and dynamics of specific multiresistant or pathogenic lineages in particular environments, like the hospital. Here, we probe the population structure of E. faecium using Bayesian-based population genetic modeling implemented in Bayesian Analysis of Population Structure (BAPS) software. The analysis involved 1,720 isolates belonging to 519 sequence types (STs) (491 for E. faecium and 28 for Enterococcus faecalis). E. faecium isolates grouped into 13 BAPS (sub)groups, but the large majority (80%) of nosocomial isolates clustered in two subgroups (2-1 and 3-3). Phylogenetic and eBURST analysis of BAPS groups 2 and 3 confirmed the existence of three separate hospital lineages (17, 18, and 78), highlighting different evolutionary trajectories for BAPS 2-1 (lineage 78) and 3-3 (lineage 17 and lineage 18) isolates. Phylogenomic analysis of 29 E. faecium isolates showed agreement between BAPS assignment of STs and their relative positions in the phylogenetic tree. Odds ratio calculation confirmed the significant association between hospital isolates with BAPS 3-3 and lineages 17, 18, and 78. Admixture analysis showed a scarce number of recombination events between the different BAPS groups. For the E. faecium hospital population, we propose an evolutionary model in which strains with a high propensity to colonize and infect hospitalized patients arise through horizontal gene transfer. Once adapted to the distinct hospital niche, this subpopulation becomes isolated, and recombination with other populations declines. IMPORTANCE Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen. Multiresistant Enterococcus faecium has become one of the most important nosocomial pathogens, causing increasing numbers of nosocomial infections worldwide. Here, we used Bayesian population genetic analysis to identify groups of related E. faecium strains and show a significant association of hospital and farm animal isolates to different genetic groups. We also found that hospital isolates could be divided into three lineages originating from sequence types (STs) 17, 18, and 78. We propose that, driven by the selective pressure in hospitals, the three hospital lineages have arisen through horizontal gene transfer, but once adapted to the distinct pathogenic niche, this population has become isolated and recombination with other populations declines. Elucidation of the population structure is a prerequisite for effective control of multiresistant E. faecium since it provides insight into the processes that have led to the progressive change of E. faecium from an innocent commensal to a multiresistant hospital-adapted pathogen.
Nature Genetics | 2016
Qing Zhou; Hongying Wang; Daniella M. Schwartz; Monique Stoffels; Yong Hwan Park; Yuan Zhang; Dan Yang; Erkan Demirkaya; Masaki Takeuchi; Wanxia Li Tsai; Jonathan J. Lyons; Xiaomin Yu; Claudia Ouyang; Celeste Chen; David T. Chin; Kristien Zaal; Settara C. Chandrasekharappa; Eric P. Hanson; Zhen Yu; James C. Mullikin; Sarfaraz Hasni; Ingrid E Wertz; Amanda K. Ombrello; Deborah L. Stone; Patrycja Hoffmann; Anne Jones; Beverly Barham; Helen L. Leavis; Annet van Royen-Kerkof; Cailin Sibley
Systemic autoinflammatory diseases are driven by abnormal activation of innate immunity. Herein we describe a new disease caused by high-penetrance heterozygous germline mutations in TNFAIP3, which encodes the NF-κB regulatory protein A20, in six unrelated families with early-onset systemic inflammation. The disorder resembles Behçets disease, which is typically considered a polygenic disorder with onset in early adulthood. A20 is a potent inhibitor of the NF-κB signaling pathway. Mutant, truncated A20 proteins are likely to act through haploinsufficiency because they do not exert a dominant-negative effect in overexpression experiments. Patient-derived cells show increased degradation of IκBα and nuclear translocation of the NF-κB p65 subunit together with increased expression of NF-κB–mediated proinflammatory cytokines. A20 restricts NF-κB signals via its deubiquitinase activity. In cells expressing mutant A20 protein, there is defective removal of Lys63-linked ubiquitin from TRAF6, NEMO and RIP1 after stimulation with tumor necrosis factor (TNF). NF-κB–dependent proinflammatory cytokines are potential therapeutic targets for the patients with this disease.
Emerging Infectious Diseases | 2003
Helen L. Leavis; Rob J. L. Willems; Janetta Top; Emile Spalburg; Ellen M. Mascini; Ad C. Fluit; Andy I. M. Hoepelman; Albert J. de Neeling; Marc J. M. Bonten
The epidemiology of vancomycin-resistant Enterococcus faecium (VREF) in Europe is characterized by a large community reservoir. In contrast, nosocomial outbreaks and infections (without a community reservoir) characterize VREF in the United States. Previous studies demonstrated host-specific genogroups and a distinct genetic lineage of VREF associated with hospital outbreaks, characterized by the variant esp-gene and a specific allele-type of the purK housekeeping gene (purK1). We investigated the genetic relatedness of vanA VREF (n=108) and vancomycin-susceptible E. faecium (VSEF) (n=92) from different epidemiologic sources by genotyping, susceptibility testing for ampicillin, sequencing of purK1, and testing for presence of esp. Clusters of VSEF fit well into previously described VREF genogroups, and strong associations were found between VSEF and VREF isolates with resistance to ampicillin, presence of esp, and purK1. Genotypes characterized by presence of esp, purK1, and ampicillin resistance were most frequent among outbreak-associated isolates and almost absent among community surveillance isolates. Vancomycin-resistance was not specifically linked to genogroups. VREF and VSEF from different epidemiologic sources are genetically related; evidence exists for nosocomial selection of a subtype of E. faecium, which has acquired vancomycin-resistance through horizontal transfer.
Journal of Clinical Microbiology | 2006
Helen L. Leavis; Rob J. L. Willems; Janetta Top; Marc J. M. Bonten
ABSTRACT To substantiate a common genetic background of ciprofloxacin-resistant Enterococcus faecium, 32 ciprofloxacin-resistant (Cipr) and 31 ciprofloxacin-susceptible (Cips) isolates from outbreaks, clinical infections, surveillances, and animals from 10 different countries were genotyped by multilocus sequence typing. Additionally, susceptibilities to ampicillin and vancomycin and the presence of esp were determined and the quinolone resistance-determining regions of parC, gyrA, parB, and gyrE were sequenced. High-level Cipr (MIC ≥ 64 μg/ml) due to point mutations in the quinolone resistance-determining region was unique to a distinct hospital-adapted genetic complex in E. faecium, previously designated CC17. Low-level Cipr (MIC = 4 μg/ml) in non-CC17 strains is not attributable to point mutations in any subunit of the topoisomerase genes, and the mechanism of resistance remains unclear. Acquisition of mutations in parC and gyrA, leading to high-level Cipr, is, in addition to ampicillin resistance and the presence of a putative pathogenicity island, another cumulative step in hospital adaptation of CC17.
Trends in Microbiology | 2012
Fernanda L. Paganelli; Rob J. L. Willems; Helen L. Leavis
Enterococcus faecalis and Enterococcus faecium are among the leading causative agents of nosocomial infections and are infamous for their resistance to many antibiotics. They cause difficult-to-treat infections, often originating from biofilm-mediated infections associated with implanted medical devices or endocarditis. Biofilms protect bacteria against antibiotics and phagocytosis, and physical removal of devices or infected tissue is often needed but is frequently not possible. Currently there are no clinically available compounds that disassemble biofilms. In this review we discuss all known structural and regulatory genes involved in enterococcal biofilm formation, the compounds directed against biofilm formation that have been studied, and potentially useful targets for future drugs to treat enterococcal biofilm-associated infections.
Mbio | 2013
Fernanda L. Paganelli; Rob J. L. Willems; Pamela Jansen; Antoni P. A. Hendrickx; Xinglin Zhang; Marc J. M. Bonten; Helen L. Leavis
ABSTRACT Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections. Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
Antimicrobial Agents and Chemotherapy | 2004
Stein Christian Mohn; Arve Ulvik; Roland Jureen; Rob J. L. Willems; Janetta Top; Helen L. Leavis; Stig Harthug; Nina Langeland
ABSTRACT Rapid and accurate identification of carriers of resistant microorganisms is an important aspect of efficient infection control in hospitals. Traditional identification methods of antibiotic-resistant bacteria usually take at least 3 to 4 days after sampling. A duplex real-time PCR assay was developed for rapid detection of ampicillin-resistant Enterococcus faecium (ARE). Primers and probes that are used in this assay specifically detected the d-Ala-d-Ala ligase gene of E. faecium and the modified penicillin-binding protein 5 gene (pbp5) carrying the Glu-to-Val substitution at position 629 (Val-629) in a set of 129 tested E. faecium strains with known pbp5 sequence. Presence of the Val-629 in the strain set from 11 different countries was highly correlated with ampicillin resistance. In a screening of hospitalized patients, the real-time PCR assay yielded a sensitivity and a specificity for the detection of ARE colonization of 95% and 100%, respectively. The results were obtained 4 h after samples were harvested from overnight broth of rectal swab samples, identifying both species and the resistance marker mutation in pbp5. This novel assay reliably identifies ARE 2 to 3 days more quickly than traditional culture methods, thereby increasing laboratory throughput, making it useful for rectal screening of ARE. The assay demonstrates the advantages of real-time PCR for detection of nosocomial pathogens.
PLOS ONE | 2013
Janetta Top; Fernanda L. Paganelli; Xinglin Zhang; Willem van Schaik; Helen L. Leavis; Miranda van Luit-Asbroek; Tom van der Poll; Masja Leendertse; Marc J. M. Bonten; Rob J. L. Willems
Nowadays, Enterococcus faecium is one of the leading nosocomial pathogens worldwide. Strains causing clinical infections or hospital outbreaks are enriched in the enterococcal surface protein (Esp) encoding ICEEfm1 mobile genetic element. Previous studies showed that Esp is involved in biofilm formation, endocarditis and urinary tract infections. In this study, we characterized the role of the putative AraC type of regulator (locus tag EfmE1162_2351), which we renamed ebrB and which is, based on the currently available whole genome sequences, always located upstream of the esp gene, and studied its role in Esp surface exposure during growth. A markerless deletion mutant of ebrB resulted in reduced esp expression and complete abolishment of Esp surface exposure, while Esp cell-surface exposure was restored when this mutant was complemented with an intact copy of ebrB. This demonstrates a role for EbrB in esp expression. However, during growth, ebrB expression levels did not change over time, while an increase in esp expression at both RNA and protein level was observed during mid-log and late-log phase. These results indicate the existence of a secondary regulation system for esp, which might be an unknown quorum sensing system as the enhanced esp expression seems to be cell density dependent. Furthermore, we determined that esp is part of an operon of at least 3 genes putatively involved in biofilm formation. A semi-static biofilm model revealed reduced biofilm formation for the EbrB deficient mutant, while dynamics of biofilm formation using a flow cell system revealed delayed biofilm formation in the ebrB mutant. In a mouse intestinal colonization model the ebrB mutant was less able to colonize the gut compared to wild-type strain, especially in the small intestine. These data indicate that EbrB positively regulates the esp operon and is implicated in biofilm formation and intestinal colonization.