Tom Buyens
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tom Buyens.
Molecular Neurobiology | 2012
Inge Van Hove; Mieke Verslegers; Tom Buyens; Nathalie Delorme; Kim Lemmens; Stijn Stroobants; Ilse Gantois; Rudi D’Hooge; Lieve Moons
Cell–cell and cell–matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3−/−) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3−/− mice and suggest an involvement of MMP-3 in mouse cerebellar development.
Journal of Neurochemistry | 2014
Djoere Gaublomme; Tom Buyens; Lies De Groef; Michelle Stakenborg; Els Janssens; Signe Ingvarsen; Astrid Porse; Niels Behrendt; Lieve Moons
Restoration of correct neural activity following central nervous system (CNS) damage requires the replacement of degenerated axons with newly outgrowing, functional axons. Unfortunately, spontaneous regeneration is largely lacking in the adult mammalian CNS. In order to establish successful regenerative therapies, an improved understanding of axonal outgrowth and the various molecules influencing it, is highly needed. Matrix metalloproteinases (MMPs) constitute a family of zinc‐dependent proteases that were sporadically reported to influence axon outgrowth. Using an ex vivo retinal explant model, we were able to show that broad‐spectrum MMP inhibition reduces axon outgrowth of mouse retinal ganglion cells (RGCs), implicating MMPs as beneficial factors in axonal regeneration. Additional studies, using more specific MMP inhibitors and MMP‐deficient mice, disclosed that both MMP‐2 and MT1‐MMP, but not MMP‐9, are involved in this process. Furthermore, administration of a novel antibody to MT1‐MMP that selectively blocks pro‐MMP‐2 activation revealed a functional co‐involvement of these proteinases in determining RGC axon outgrowth. Subsequent immunostainings showed expression of both MMP‐2 and MT1‐MMP in RGC axons and glial cells. Finally, results from combined inhibition of MMP‐2 and β1‐integrin were suggestive for a functional interaction between these molecules. Overall, our data indicate MMP‐2 and MT1‐MMP as promising axonal outgrowth‐promoting molecules.
Journal of Biomolecular Screening | 2013
Djoere Gaublomme; Tom Buyens; Lieve Moons
Despite intensive research efforts over the past years, regeneration of injured axons in the central nervous system remains elusive. In the quest for neurostimulatory agents that promote regeneration, well-defined models and analysis methods are required. Tissue explant cultures closely resemble the in vivo situation, making them ideal to study the effect of compounds on the neuro-glial network. This study reports the optimization of an explant culture technique using retinas of neonatal mice and the development of an analysis script that allows for rapid and automated analysis of neurite outgrowth from these explants. The key features of this script (i.e., local thresholding and form selection) allow for swift and unbiased detection of neurite outgrowth. The novel analysis method is compared with two commonly used manual methods and successfully validated by performing dose-response studies with molecules known to either inhibit (anti–β1-integrin antibody) or stimulate (brain-derived neurotrophic factor and ciliary neurotrophic factor) neurite outgrowth from retinal explants. Finally, the new analysis script is used to study whether retinal explant origin has any effect on neurite outgrowth.
PLOS ONE | 2015
Eline Dekeyster; Emiel Geeraerts; Tom Buyens; Chris Van den Haute; Veerle Baekelandt; Lies De Groef; Manuel Salinas-Navarro; Lieve Moons
According to the neurotrophin deprivation hypothesis, diminished retrograde delivery of neurotrophic support during an early stage of glaucoma pathogenesis is one of the main triggers that induce retinal ganglion cell (RGC) degeneration. Therefore, interfering with neurotrophic signaling seems an attractive strategy to achieve neuroprotection. Indeed, exogenous neurotrophin administration to the eye has been shown to reduce loss of RGCs in animal models of glaucoma; however, the neuroprotective effect was mostly insufficient for sustained RGC survival. We hypothesized that treatment at the level of neurotrophin-releasing brain areas might be beneficial, as signaling pathways activated by target-derived neurotrophins are suggested to differ from pathways that are initiated at the soma membrane. In our study, first, the spatiotemporal course of RGC degeneration was characterized in mice subjected to optic nerve crush (ONC) or laser induced ocular hypertension (OHT). Subsequently, the well-known neurotrophin brain-derived neurotrophic factor (BDNF) was chosen as the lead molecule, and the levels of BDNF and its high-affinity receptor, tropomyosin receptor kinase B (TrkB), were examined in the mouse retina and superior colliculus (SC) upon ONC and OHT. Both models differentially influenced BDNF and TrkB levels. Next, we aimed for RGC protection through viral vector-mediated upregulation of collicular BDNF, thought to boost the retrograde neurotrophin delivery. Although the previously reported temporary neuroprotective effect of intravitreally delivered recombinant BDNF was confirmed, viral vector-induced BDNF overexpression in the SC did not result in protection of the RGCs in the glaucoma models used. These findings most likely relate to decreased neurotrophin responsiveness upon vector-mediated BDNF overexpression. Our results highlight important insights concerning the complexity of neurotrophic factor treatments that should surely be considered in future neuroprotective strategies.
Molecular and Cellular Neuroscience | 2013
Mieke Verslegers; Inge Van Hove; Tom Buyens; Eline Dekeyster; Ellen Knevels; Lieve Moons
During the first postnatal days in the mouse, granule cells (GCs) undergo massive proliferation, which then gradually decreases. Matrix metalloproteinase-2 (MMP-2), a Zn(2+)-dependent proteolytic enzyme, is involved in a wide variety of pathological and physiological pathways. Evidence for a role of this proteinase in cell proliferation is emerging, reporting its involvement in pathological proliferation, as well as during neurogenesis and developmental proliferation of non-CNS tissues. In this study, MMP-2 protein expression was observed within the early postnatal cerebellar cortex, predominantly in Purkinje cells and within the GC proliferative zone, i.e. the superficial external granular layer (EGL). Consistently, the spatiotemporal MMP-2 mRNA and protein profiles highly correlated with the peak of GC precursor (GCP) proliferation and detailed morphometric analyses of MMP-2 deficient cerebella revealed a thinner EGL due to a decreased GCP proliferation. BrdU cumulative experiments, performed to measure the length of different cell cycle phases, further disclosed a transiently prolonged S-phase in MMP-2 deficient GCPs during early cerebellar development. In consequence, MMP-2 deficient animals displayed a transient delay in GC migration towards the IGL. In conclusion, our findings provide important evidence for a role for MMP-2 in neuronal proliferation and cell cycle kinetics in the developing CNS.
Methods of Molecular Biology | 2014
Tom Buyens; Djoere Gaublomme; Inge Van Hove; Lies De Groef; Lieve Moons
Despite intensive research efforts over the past years, regeneration of injured axons in the central nervous system (CNS) remains elusive. The discovery of novel neuro-stimulatory agents that promote regeneration is hampered by a gap between high content analysis platforms using neuronal cells and time-consuming preclinical animal models. In this regard, tissue explant cultures, which are easily manageable and more closely resemble the in vivo situation, form an ideal model system to study the effect of compounds on the neuroglial network. Retinal explants have proven to be a useful tool to investigate the effect of molecules on neuronal survival and regeneration. In this chapter, we report a detailed description of how to isolate and culture retinal explants and how to immunolabel the outgrowing neurites. Furthermore, we describe different analysis tools, both manual and automated, to quantify neurite outgrowth from retinal explants.
Brain Structure & Function | 2018
Ilse Bollaerts; Lien Veys; Emiel Geeraerts; Lien Andries; Lies De Groef; Tom Buyens; Manuel Salinas-Navarro; Lieve Moons; Inge Van Hove
Due to the lack of axonal regeneration, age-related deterioration in the central nervous system (CNS) poses a significant burden on the wellbeing of a growing number of elderly. To overcome this regenerative failure and to improve the patient’s life quality, the search for novel regenerative treatment strategies requires valuable (animal) models and techniques. As an extension of the CNS, the retinofugal system, consisting of retinal ganglion cells that send their axons along the optic nerve to the visual brain areas, has importantly contributed to the current knowledge on mechanisms underlying the restricted regenerative capacities and to the development of novel strategies to enhance axonal regeneration. It provides an extensively used research tool, not only in amniote vertebrates including rodents, but also in anamniote vertebrates, such as zebrafish. Indeed, the latter show robust regeneration capacities, thereby providing insights into the factors that contribute to axonal regrowth and proper guidance, complementing studies in mammals. This review provides an integrative and critical overview of the classical and state-of-the-art models and methods that have been employed in the retinofugal system to advance our knowledge on the signaling pathways underlying the restricted versus robust axonal regeneration in rodents and zebrafish, respectively. In vitro, ex vivo and in vivo models and techniques to improve the visualization and analysis of regenerating axons are summarized. As such, the retinofugal system is presented as a valuable model to further facilitate research on axonal regeneration and to open novel therapeutic avenues for CNS pathologies.
Archive | 2016
Manuel Salinas Navarro; Lien Andries; Tom Buyens; Lies De Groef; Lieve Moons
Investigative Ophthalmology & Visual Science | 2016
Evy Lefevere; Inge Van Hove; Jurgen Sergeys; Tom Buyens; Lieve Moons
Archive | 2015
Manuel Salinas Navarro; Lien Andries; Tom Buyens; Lies De Groef; Lieve Moons