Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ingrid M. C. Kamerling is active.

Publication


Featured researches published by Ingrid M. C. Kamerling.


Nature Medicine | 2015

Detection of colorectal polyps in humans using an intravenously administered fluorescent peptide targeted against c-Met

Jacobus Burggraaf; Ingrid M. C. Kamerling; Paul Gordon; Lenneke Schrier; Marieke L. de Kam; Andrea J Kales; Ragnar Bendiksen; Bård Indrevoll; Roger M. Bjerke; Siver A. Moestue; Siavash Yazdanfar; Alexandra M. J. Langers; Marit Swaerd-Nordmo; Geir Torheim; Madhuri Warren; Hans Morreau; Philip W. Voorneveld; Tessa Buckle; Fijs W. B. van Leeuwen; Liv-Ingrid Ødegårdstuen; Grethe Tang Dalsgaard; Andrew Healey; James C. Hardwick

Colon cancer prevention currently relies on colonoscopy using white light to detect and remove polyps, but small and flat polyps are difficult to detect and frequently missed when using this technique. Fluorescence colonoscopy combined with a fluorescent probe specific for a polyp biomarker may improve polyp detection. Here we describe GE-137, a water-soluble probe consisting of a 26–amino acid cyclic peptide that binds the human tyrosine kinase c-Met conjugated to a fluorescent cyanine dye. Intravenous administration of GE-137 leads to its accumulation specifically in c-Met–expressing tumors in mice, and it is safe and well tolerated in humans. Fluorescence colonoscopy in patients receiving intravenous GE-137 enabled visualization of all neoplastic polyps that were visible with white light (38), as well as an additional nine polyps that were not visible with white light. This first-in-human pilot study shows that molecular imaging using an intravenous fluorescent agent specific for c-Met is feasible and safe, and that it may enable the detection of polyps missed by other techniques.


The Lancet Respiratory Medicine | 2013

Efficacy and safety of RPL554, a dual PDE3 and PDE4 inhibitor, in healthy volunteers and in patients with asthma or chronic obstructive pulmonary disease: findings from four clinical trials.

Lui Franciosi; Zuzana Diamant; Katharine H. Banner; Rob G.J.A. Zuiker; Nicoletta Morelli; Ingrid M. C. Kamerling; Marieke L. de Kam; Jacobus Burggraaf; Adam F. Cohen; Mario Cazzola; Luigino Calzetta; Dave Singh; Domenico Spina; Michael J A Walker; Clive P. Page

BACKGROUND Many patients with asthma or chronic obstructive pulmonary disease (COPD) routinely receive a combination of an inhaled bronchodilator and anti-inflammatory glucocorticosteroid, but those with severe disease often respond poorly to these classes of drug. We assessed the efficacy and safety of a novel inhaled dual phosphodiesterase 3 (PDE3) and PDE4 inhibitor, RPL554 for its ability to act as a bronchodilator and anti-inflammatory drug. METHODS Between February, 2009, and January, 2013, we undertook four proof-of-concept clinical trials in the Netherlands, Italy, and the UK. Nebulised RPL554 was examined in study 1 for safety in 18 healthy men who were randomly assigned (1:1:1) to receive an inhaled dose of RPL554 (0·003 mg/kg or 0·009 mg/kg) or placebo by a computer-generated randomisation table. Subsequently, six non-smoking men with mild allergic asthma received single doses of RPL554 (three received 0·009 mg/kg and three received 0·018 mg/kg) in an open-label, adaptive study, and then ten men with mild allergic asthma were randomly assigned to receive placebo or RPL554 (0·018 mg/kg) by a computer-generated randomisation table for an assessment of safety, bronchodilation, and bronchoprotection. Study 2 examined the reproducibility of the bronchodilator response to a daily dose of nebulised RPL554 (0·018 mg/kg) for 6 consecutive days in a single-blind (patients masked), placebo-controlled study in 12 men with clinically stable asthma. The safety and bronchodilator effect of RPL554 (0·018 mg/kg) was assessed in study 3, an open-label, placebo-controlled crossover trial, in 12 men with mild-to-moderate COPD. In study 4, a placebo-controlled crossover trial, the effect of RPL554 (0·018 mg/kg) on lipopolysaccharide-induced inflammatory cell infiltration in induced sputum was investigated in 21 healthy men. In studies 3 and 4, randomisation was done by computer-generated permutation with a block size of two for study 3 and four for study 4. Unless otherwise stated, participants and clinicians were masked to treatment assignment. Analyses were by intention to treat. All trials were registered with EudraCT, numbers 2008-005048-17, 2011-001698-22, 2010-023573-18, and 2012-000742-34. FINDINGS Safety was a primary endpoint of studies 1 and 3 and a secondary endpoint of studies 2 and 4. Overall, RPL554 was well tolerated, and adverse events were generally mild and of equal frequency between placebo and active treatment groups. Efficacy was a primary endpoint of study 2 and a secondary endpoint of studies 1 and 3. Study 1 measured change in forced expiratory volume in 1 s (FEV1) and provocative concentration of methacholine causing a 20% fall in FEV1 (PC20MCh) in participants with asthma. RPL554 produced rapid bronchodilation in patients with asthma with an FEV1 increase at 1 h of 520 mL (95% CI 320-720; p<0·0001), which was a 14% increase from placebo, and increased the PC20MCh by 1·5 doubling doses (95% CI 0·63-2·28; p=0·004) compared with placebo. The primary endpoint of study 2 was maximum FEV1 reached during 6 h after dosing with RPL554 in patients with asthma. RPL554 produced a similar maximum mean increase in FEV1 from placebo on day 1 (555 mL, 95% CI 442-668), day 3 (505 mL, 392-618), and day 6 (485 mL, 371-598; overall p<0·0001). A secondary endpoint of study 3 (patients with COPD) was the increase from baseline in FEV1. RPL554 produced bronchodilation with a mean maximum FEV1 increase of 17·2% (SE 5·2). In healthy individuals (study 4), the primary endpoint was percentage change in neutrophil counts in induced sputum 6 h after lipopolysaccharide challenge. RPL554 (0·018 mg/kg) did not significantly reduce the percentage of neutrophils in sputum (80·3% in the RPL554 group vs 84·2% in the placebo group; difference -3·9%, 95% CI -9·4 to 1·6, p=0·15), since RPL554 significantly reduced neutrophils (p=0·002) and total cells (p=0·002) to a similar degree. INTERPRETATION In four exploratory studies, inhaled RPL554 is an effective and well tolerated bronchodilator, bronchoprotector, and anti-inflammatory drug and further studies will establish the full potential of this new drug for the treatment of patients with COPD or asthma. FUNDING Verona Pharma.


Alimentary Pharmacology & Therapeutics | 2002

Dose‐related effects of motilin on proximal gastrointestinal motility

Ingrid M. C. Kamerling; A. D. Van Haarst; Jacobus Burggraaf; H. C. Schoemaker; I. Biemond; R. Jones; Adam F. Cohen; A. A. M. Masclee

To assess non‐invasively the dose–response relations for the effects of exogenous motilin on antrum contraction frequency, gall‐bladder volume and gastric myoelectrical activity.


Therapeutic Drug Monitoring | 2015

Colistin: Revival of an Old Polymyxin Antibiotic

Anneke C. Dijkmans; E B Wilms; Ingrid M. C. Kamerling; Willem Birkhoff; Natalia V. Ortiz-Zacarias; Cees van Nieuwkoop; Henri A. Verbrugh; Daan Touw

Abstract: Colistin (polymyxin E) is a positively charged deca-peptide antibiotic that disrupts the integrity of the outer membrane of the cell wall of gram-negative bacteria by binding to the lipid A moiety of lipopolysaccharides, resulting in cell death. The endotoxic activity of lipopolysaccharides is simultaneously inhibited. Colistin is increasingly being prescribed as rescue treatment for infections with multidrug-resistant bacilli. Nephrotoxicity and, to a lesser degree, neurotoxicity occur often during systemic colistin therapy, and have severely limited its application in the past. However, these side effects are largely reversible and can be managed through close monitoring. The prodrug colistimethate sodium (CMS) is less toxic and is, therefore, the preferred formulation for parenteral administration. Importantly, resistance to colistin seems to emerge often unless it is combined with another antibiotic, but further studies into this phenomenon are necessary. Pharmacokinetic and pharmacodynamic properties have received little attention, partly because of the physicochemical peculiarities of polymyxin antibiotics, especially their propensity to stick to other molecules and surfaces. The ratio between the area under the curve of free colistin and the pathogens Minimal Inhibitory Concentration (MIC) best predicts microbiological and clinical responses, but more studies are needed in this area. Likewise, further standardization is needed in production and labeling of colistin formulations, and in the way the susceptibility of bacteria to colistin is determined.


European Clinical Respiratory Journal | 2015

Kinetics of TH2 biomarkers in sputum of asthmatics following inhaled allergen

Rob G.J.A. Zuiker; Marcella Ruddy; Nicoletta Morelli; Robin Mogg; Veronica M. Rivas; Kristien Van Dyck; Inge De Lepeleire; Michael Tanen; J. Diderik Boot; Ingrid M. C. Kamerling; Zuzana Diamant

Background Allergen-induced late airway response offers important pharmacodynamic targets, including T helper 2 (TH2) biomarkers. However, detection of inflammatory markers has been limited in dithiothreitol-processed sputum. Objectives To test whether allergen-induced TH2 inflammatory markers can be reproducibly quantified by sensitive detection techniques in ultracentrifuged sputum and the effect of fluticasone (FP) on these endpoints. Methods Thirteen allergic asthmatics with dual allergen-induced airway responses, documented during a single-blind placebo run-in period, participated in a double-blind, two-period crossover study. Each period consisted of three consecutive days, separated by ≥3 weeks. Following randomization, subjects inhaled FP (500 µg bid, five doses total) or placebo. On Day 2 in each study period, allergen challenge was performed and airway response measured by forced expiratory volume in 1 sec (FEV1) until 7 h post-challenge. Sputum was induced 24 h pre-allergen and 7 and 24 h post-allergen. Sputum samples were split into two portions: TH2 biomarkers were quantified by Meso Scale multiplex platform following ultracentrifugation, and cell differentials were counted on Giemsa–May-Grünwald-stained cytospins. Allergen-induced changes in inflammatory endpoints were compared between FP and placebo using a mixed model ANCOVA. Results Inhaled allergen induced dual airway responses in all subjects during both placebo periods with reproducible late asthmatic response (LAR) and increased sputum inflammatory biomarkers (IL-2, IL-4, IL-13, and eotaxin-1) and eosinophil counts. FP effectively blunted both the LAR and the inflammatory biomarkers. Conclusions Combining novel, sensitive quantification methods with ultracentrifugation allows reproducible quantification of sputum biomarkers following allergen challenge, reversed by FP. This approach allows non-invasive identification of pharmacodynamic targets for anti-asthma therapies.


Alimentary Pharmacology & Therapeutics | 2004

Gallbladder volume as a biomarker for the motilin effect in healthy volunteers and patients with functional dyspepsia

Ingrid M. C. Kamerling; A. D. Van Haarst; M. L. De Kam; Adam F. Cohen; A. A. M. Masclee; Jacobus Burggraaf

Aim : To investigate a motilin effect on gallbladder volume in healthy volunteers and patients with functional dyspepsia.


The Journal of Antibiotics | 2017

Fosfomycin: Pharmacological, Clinical and Future Perspectives

Anneke Corinne Dijkmans; Natalia Veneranda Ortiz Zacarías; Jacobus Burggraaf; Johan W. Mouton; E B Wilms; Cees van Nieuwkoop; Daniël J. Touw; Jasper Stevens; Ingrid M. C. Kamerling

Fosfomycin is a bactericidal, low-molecular weight, broad-spectrum antibiotic, with putative activity against several bacteria, including multidrug-resistant Gram-negative bacteria, by irreversibly inhibiting an early stage in cell wall synthesis. Evidence suggests that fosfomycin has a synergistic effect when used in combination with other antimicrobial agents that act via a different mechanism of action, thereby allowing for reduced dosages and lower toxicity. Fosfomycin does not bind to plasma proteins and is cleared via the kidneys. Due to its extensive tissue penetration, fosfomycin may be indicated for infections of the CNS, soft tissues, bone, lungs, and abscesses. The oral bioavailability of fosfomycin tromethamine is <50%; therefore, oral administration of fosfomycin tromethamine is approved only as a 3-gram one-time dose for treating urinary tract infections. However, based on published PK parameters, PK/PD simulations have been performed for several multiple-dose regimens, which might lead to the future use of fosfomycin for treating complicated infections with multidrug-resistant bacteria. Because essential pharmacological information and knowledge regarding mechanisms of resistance are currently limited and/or controversial, further studies are urgently needed, and fosfomycin monotherapy should be avoided.


British Journal of Clinical Pharmacology | 2013

Early stage development of the glycine-1 re-uptake inhibitor SCH 900435: central nervous system effects compared with placebo in healthy men

Marieke Liem-Moolenaar; Pierre Peeters; Ingrid M. C. Kamerling; Chris Hogg; Graham E. Holder; Huub Jan Kleijn; Edwin Spaans; Joanna Udo de Haes; Marieke L. de Kam; Kari L. Franson; Adam F. Cohen; Joop M. A. van Gerven

AIMS To report the first three studies with SCH 900435, a selective glycine-1 re-uptake inhibitor in development for treating schizophrenia, using systematic evaluations of pharmacodynamics to understand the observed effects. METHODS Three double-blind, placebo-controlled studies (single, visual effect and multiple dose) were performed. In the single and multiple dose study SCH 900435 (0.5-30 mg) was given to healthy males and frequent pharmacokinetic and pharmacodynamic measurements were performed. The visual effects study incorporated visual electrophysiological measures of macular, retinal and intracranial visual pathway function. RESULTS In the single dose study (highest difference, 95% CI, P) increases in smooth pursuit eye movements (8, 12 mg (-6.09, 10.14, -2.04, 0.013), 30 mg), pupil : iris ratio (20 and 30 mg (-0.065, 0.09, -0.04, <0.0001)), VAS colour perception (30 mg (-9.48, 13.05, -5.91, <0.0001)) and changes in spontaneous reports of visual disturbance were found, while FSH (8 mg (0.42, 0.18, 0.66, 0.0015), 12, 20 mg), LH (8-30 mg (1.35, 0.65, 2.05, 0.0003)) and EEG alpha2 activity decreased (12, 20, 30 mg (0.27, 0.14, 0.41, 0.0002)). A subsequent dedicated visual effects study demonstrated that visual effects were transient without underlying electrophysiological changes. This provided enough safety information for starting a multiple ascending dose study, showing less visual symptoms after twice daily dosing and titration, possibly due to tolerance. CONCLUSIONS Several central nervous system (CNS) effects and gonadotropic changes resulted from administration of 8 mg and higher, providing evidence for CNS penetration and pharmacological activity of SCH 900435. Antipsychotic activity in patients, specificity of the reported effects for this drug class and possible tolerance to visual symptoms remain to be established.


Pulmonary Pharmacology & Therapeutics | 2015

Reproducibility of biomarkers in induced sputum and in serum from chronic smokers

Rob G.J.A. Zuiker; Ingrid M. C. Kamerling; Nicoletta Morelli; Cesar Calderon; J. Diderik Boot; Marieke de Kam; Zuzana Diamant; Jacobus Burggraaf; Adam F. Cohen

RATIONALE Soluble inflammatory markers obtained from non-invasive airway sampling such as induced sputum may be useful biomarkers for targeted pharmaceutical interventions. However, before these soluble markers can be used as potential targets, their variability and reproducibility need to be established in distinct study populations. OBJECTIVE This study aimed to assess the reproducibility of biomarkers obtained from induced sputum and serum in chronic smokers and non-smokers. METHOD Sputum and serum samples were obtained from 16 healthy non-smokers and 16 asymptomatic chronic smokers (for both groups: 8M/8F, 30-52 years, FEV1 ≥80% pred.; ≥10 pack years for the smokers) on 2 separate visits 4-10 days apart. Soluble markers in serum and sputum were analysed by ELISA. The differences between smokers vs non-smokers were analysed with a t-test and variability was assessed on log-transformed data by a mixed model ANOVA. RESULTS Analysable sputum samples could be obtained from all 32 subjects. In both study populations neutrophils and macrophages were the predominant cell types. Serum Pulmonary Surfactant Associated Protein D had favourable reproducibility criteria for reliability ratio (0.99), intra-subject coefficient of variation (11.2%) and the Bland Altman limits of agreement. Furthermore, chronic smokers, compared to non-smokers, had significantly higher sputum concentrations of IL-8 (1094.6 pg/mL vs 460.8 pg/mL, p = 0.006)), and higher serum concentrations of Pulmonary Surfactant Associated Protein D (110.9 pg/mL vs 64.7 pg/mL, p = 0.019), and lower concentrations of Serum Amyloid A (1352.4 pg/mL vs 2297.5 pg/mL, p = 0.022). CONCLUSION Serum Pulmonary Surfactant Associated Protein D proved to be a biomarker that fulfilled the criteria for reproducibility in both study groups.


Pharmacology Research & Perspectives | 2018

Fosfomycin as a potential therapy for the treatment of systemic infections: a population pharmacokinetic model to simulate multiple dosing regimens

Natalia Veneranda Ortiz Zacarías; Anneke C. Dijkmans; Jacobus Burggraaf; Johan W. Mouton; E B Wilms; Cees van Nieuwkoop; Daan Touw; Ingrid M. C. Kamerling; Jasper Stevens

Fosfomycin has emerged as a potential therapy for multidrug‐resistant bacterial infections. In most European countries, the oral formulation is only approved as a 3 g single dose for treatment of uncomplicated cystitis. However, for the treatment of complicated systemic infections, this dose regimen is unlikely to reach efficacious serum and tissue concentrations. This study aims to investigate different fosfomycin‐dosing regimens to evaluate its rationale for treatment of systemic infections. Serum concentration‐time profiles of fosfomycin were simulated using a population pharmacokinetic model based on published pharmacokinetic parameter values, their uncertainty, inter‐individual variability and covariates. The model was validated on published data and used to simulate a wide range of dosing regimens for oral and intravenous administration of fosfomycin. Finally, based on the minimum inhibitory concentration for E. coli, surrogate pharmacodynamic indices were calculated for each dosing regimen. This is the first population pharmacokinetic model to describe the oral pharmacokinetics of fosfomycin using data from different literature sources. The model and surrogate pharmacodynamic indices provide quantitative evidence that a dosing regimen of 6–12 g per day divided in 3 doses is required to obtain efficacious exposure and may serve as a first step in the treatment of systemic multi‐drug‐resistant bacterial infections.

Collaboration


Dive into the Ingrid M. C. Kamerling's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daan Touw

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar

Jasper Stevens

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

I. Biemond

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge