Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John J. Garant is active.

Publication


Featured researches published by John J. Garant.


electronic components and technology conference | 2008

50μm pitch Pb-free micro-bumps by C4NP technology

Bing Dang; Da-Yuan Shih; Stephen L. Buchwalter; Cornelia K. Tsang; Chirag S. Patel; John U. Knickerbocker; Peter A. Gruber; Sarah H. Knickerbocker; John J. Garant; Krystyna W. Semkow; Klaus Ruhmer; Emmett Hughlett

Controlled collapse chip connection new process (C4NP) is currently used in IBM manufacturing for all 300 mm Pb-free wafer bumping for flip chip packages. In this study, the extendibility of C4NP technology to ultra fine pitch applications has been explored. Reusable C4NP glass molds were fabricated and characterized for 50 mum pitch application. Mold fill and wafer transfer with Pb-free solders have been demonstrated using both 200 mm and 300 mm wafers in a manufacturing environment. Significant improvement in bump yield was achieved for these early demonstrations of fine pitch interconnections through process optimization and contamination control. Challenge in wafer inspection metrology is discussed for the 50 mum pitch micro-bumps. Mechanical strength of the C4NP micro-bumps has been characterized using test dies with a full area array of micro-bumps.


electronic components and technology conference | 2008

C4NP technology: Manufacturability, yields and reliability

Eric D. Perfecto; David Hawken; Hai P. Longworth; Harry D. Cox; Kamalesh K. Srivastava; Valerie Oberson; Jayshree Shah; John J. Garant

As a part of IBM movement from Pb-rich solders to Pb-free solder, a new low cost process has been developed to deposit the solder to a capture, or under bump metal (UBM) pad, with Suss MicroTech Inc as the equipment partner. The controlled collapsed chip connection new process (C4NP) has moved, over the last 2 years, from development into manufacturing for 300 mm wafers. During this transition, a great number of process improvements have resulted in high fabrication yields. Manufacturing robustness has been achieved by clearly identifying the processes which affect the C4 structural integrity. The solder composition has been optimized to improve its mechanical properties as well as low alpha emission rate requirement. Sector partitioning methodology was used to obtain root cause for various defects which then, through replication studies, were confirmed. Key process improvements in the capture pad build, mold fabrication, and mold fill tool have been accomplished as the process has matured. Thermal undercut was identified as a mechanism of Cu seed consumption when no top Cu was available on top of the Ni UBM. C4NP technology can produce yields comparable to that of electroplated C4 Bumps. Yield learning model shows a 15% defect reduction per month since the start of the C4NP program. Technology qualification for 300 mm wafers with 200um and 150 um pitch Pb-free C4 bumps has been successfully completed.


electronic components and technology conference | 2007

C4NP Technology for Lead Free Solder Bumping

Eric Laine; Eric D. Perfecto; Barrie C. Campbell; James Wood; James A. Busby; John J. Garant; Luc Guerin

C4NP is a novel solder bumping technology developed by IBM that addresses the limitations of existing bumping technologies by enabling low-cost, fine pitch bumping using a variety of lead-free solder alloys. It is a solder transfer technology where molten solder is injected into pre-fabricated and reusable glass molds. The glass mold contains etched cavities which mirror the bump pattern on the wafer. Filled mold and wafer are brought into close proximity/soft contact at reflow temperature and solder bumps are transferred onto the entire 300 mm (or smaller) wafer in a single process step without the complexities associated with liquid flux. The simplicity of the process makes it a low cost, high yield and fast cycle time solution for bumping with a variety of high performance lead free alloys. The focus of this paper is on the mold fabrication, solder fill and inspection steps prior to solder transfer including high volume manufacturing tool designs. Yield improvements from the mold suppliers and mold specs are discussed. Finally, the results from a detailed cost model are reviewed. This cost model includes a comparison of C4NP versus alternative bumping techniques and includes capital, materials, and labor cost factors. The data in this paper are provided by the IBM Systems and Technology Group in the Hudson Valley Research Park, NY.


ieee soi 3d subthreshold microelectronics technology unified conference | 2014

Prototype of multi-stacked memory wafers using low-temperature oxide bonding and ultra-fine-dimension copper through-silicon via interconnects

Wei Lin; Johnathan E. Faltermeier; Kevin R. Winstel; Spyridon Skordas; Troy L. Graves-Abe; Pooja Batra; Kenneth Robert Herman; John Golz; Toshiaki Kirihata; John J. Garant; Alex Hubbard; Kris Cauffman; Theodore Levine; James Kelly; Deepika Priyadarshini; Brown Peethala; Raghuveer Patlolla; Matthew T. Shoudy; J. Demarest; Jean E. Wynne; Donald F. Canaperi; Dale McHerron; Daniel George Berger; Subramanian S. Iyer

Reported for the first time is proof-of-concept multi-stacking of memory wafers based on low-temperature oxide wafer bonding using novel design and integration of two types of ultra-fine-dimension copper TSV interconnects. The combined via-middle (intra-via) and via-last (inter-via) strategy allows for the greatest degree of interconnectivity with the tightest allowable pitches and permits a highly integrated interconnect system across the stack. In combination with the successful metallization of the ultra-fine-dimension TSVs, the present work has shown the viability to extend the perceived TSV technology beyond the ITRS roadmap.


international conference on electronic packaging technology | 2008

C4NP for Pb-free solder wafer bumping and 3D fine-pitch applications

Da-Yuan Shih; Bing Dang; Peter A. Gruber; Minhua Lu; S. Kang; Stephen L. Buchwalter; John U. Knickerbocker; Eric D. Perfecto; John J. Garant; Sarah H. Knickerbocker; Krystyna W. Semkow; B. Sundlof; J. Busby; R. Weisman; Klaus Ruhmer; Emmett Hughlett

Controlled collapse chip connection - new process (C4NP) technology is a novel solder bumping technology developed by IBM to address the limitations of existing bumping technologies. Through continuous improvements in processes, materials and defect control, C4NP technology has been successfully implemented at IBM in the manufacturing of all 300 mm Pb-free solder bumped wafers. Both 200 mum and 150 mum pitch products have been qualified and are currently ramping up volume production. Extendibility of C4NP to 50 mum ultra-fine pitch microbump application has been successfully demonstrated with the existing C4NP manufacturing tools. Targeted applications for microbumps are three-dimensional (3D) chip integration and the conversion of memory wafers from wirebonding (WB) to C4 bumping. The metrology data on solder volume, bump height, defect and yield have been characterized by RVSI inspection. This paper reviews the C4NP processes from mold manufacturing, solder fill and solder transfer onto 300 mm wafers, along with defect and yield analysis. Reliability challenges as well as solutions in the development and qualification of flip chip Pb-free solder joint are also reviewed. In addition to a suitable under bump metallurgy (UBM), a robust lead-free solder alloy with precisely controlled composition and special alloy doping is needed to enhance performance and reliability.


electronic components and technology conference | 2016

End-to-End Integration of a Multi-die Glass Interposer for System Scaling Applications

Brittany Hedrick; Vijay Sukumaran; Benjamin V. Fasano; Christopher L. Tessler; John J. Garant; Jorge Lubguban; Sarah H. Knickerbocker; Michael S. Cranmer; Ian D. Melville; Daniel George Berger; Matthew Angyal; Richard F. Indyk; David Lewison; Charles L. Arvin; Luc Guerin; Maryse Cournoyer; Marc Phaneuf Luc Ouellet; Jean Audet; Franklin Manuel Baez; Shidong Li; Subramanian S. Iyer

The processes key to enabling 3D manufacturing, namely, bond, backgrind, and through silicon via (TSV) reveal, are extended for 300 mm glass substrates to fabricate a heterogeneous, multi-die, 2.5D glass interposer. Based on an existing silicon interposer offering, the glass interposer is comprised of multi-level “device” side copper wiring, with line space (L/S) of ≤ 2.5 μm, built using damascene techniques, a 55 μm glass core with through glass vias (TGVs), and multiple UBM levels finished with tin silver (SnAg) C4 bumps. The 300mm TGV wafers are processed on existing silicon wafer manufacturing equipment following established, integrated silicon process flows. Once fully processed, the glass wafers are diced, and the interposer joined to a ceramic carrier by mass reflow. Sub-assemblies are then underfilled, the top die attached, and lidding completed. The final assemblies are tested to evaluate performance of chip to chip interconnects, chip-to-package (through interposer) interconnects, and chip-to-PCB (through interposer and package) interconnects. Results of loss vs frequency measurements are compared, for the glass interposer against the existing silicon interposer results.


electronic components and technology conference | 2014

A novel methodology for wafer-specific feed-forward management of backside silicon removal by wafer grinding for optimized through silicon via reveal

Tyson Alvanos; John J. Garant; Yu Iijima; Richard F. Indyk; Christopher Rosenthal; Osamu Sato; Naoki Sugase; Hideo Takizawa; Frank Wei

As 3DIC with through silicon vias (TSV) approaches high volume manufacturing readiness the importance of precision backgrinding has become increasingly more evident. Active management of the backgrinding process has multiple benefits in that it reduces the risk of wafer backside contamination due to premature contact with vias, it enables optimization of the post-thinning residual silicon thickness and the final via reveal process. It can compensate for poor via fabrication depth uniformity and less than ideal temporary bonding total thickness variation (TTV). In this paper we will demonstrate the utility of two tools that when used together can systematically produce thin TSV containing wafers to their optimal thickness while protecting the wafers from particulate contamination. The first instrument in this process scheme is a metrology tool that utilizes IR reflectance to measure the silicon thickness remaining between the bottom of the TSV and backside surface of the wafer. These measurements are then transferred to a special grinding tool that can interpret the data and make changes to the grinding depth within the wafer so as to leave thickness of silicon above the TSVs as uniform as possible. Having removed the bulk of the Si through mechanical grinding and Chem/Mech polishing, the next step in the via-middle process is to remove the last few microns of Si overburden to expose the vias. By leaving a shallower Si layer above the TSV during the thinning process compared to current process, the final via reveal process time can be reduced. Also the need for rework in this process because of the wafer-to-wafer variability in the remaining silicon thickness above the TSV can be eliminated. In addition to measuring the pre-grinding Si thickness, the IR reflectance measurement tool can be used to verify the remaining silicon thickness post grind, establishing thinning process feedback and via reveal process feed-forward data.


Archive | 2007

PROCESS FOR MAKING INTERCONNECT SOLDER Pb-FREE BUMPS FREE FROM ORGANO-TIN/TIN DEPOSITS ON THE WAFER SURFACE

Sarah H. Knickerbocker; Sean A. Allen; John J. Garant; Jerry A. Gorrell; Phillip W. Palmatier; Christopher L. Tessler


Archive | 1996

Structure to reduce stress in multilayer ceramic substrates

John J. Garant; Richard F. Indyk


Archive | 1998

CVD of metals capable of receiving nickel or alloys thereof using inert contact

Donald R. Wall; John J. Garant; Kevin M. Prettyman; Srinivasa S. N. Reddy

Researchain Logo
Decentralizing Knowledge