Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jun Sung Chun is active.

Publication


Featured researches published by Jun Sung Chun.


Proceedings of SPIE | 2016

Benchmarking study of EUV resists for NXE:3300B

Yu-Jen Fan; Mac Mellish; Jun Sung Chun; Scott McWilliams; Cecilia Montgomery; Warren Montgomery

EUV lithographers have continued to reduce the barriers to high Volume Manufacturing (HVM) introduction. Tool, mask and photoresist manufacturers have made excellent progress on several fronts, including resolution of many EUV source related issues, resists for early imaging characterization, and defect inspection tooling. In this discussion, we will focus on photoresist development. For many years, the team at SUNY Polytechnic Institute (SUNY Poly) has provided results from a neutral photoresist benchmarking study, which has been quite useful in establishing the limits of currently available photoresist systems [1-5]. New photoresist systems are being developed with improving resolution, but they also have lower coated thicknesses. In an effort to continue to point out potential lithographic problem areas, SUNY Poly has been evaluating the ‘etch compatibility’ of the best performing photoresists available in order to determine if the decreasing aspect ratios would prove a detriment to etch performance. In this paper, we will show data from our most recent benchmark study. We will also include smoothing process results, as well as some post-etch results obtained using the NXE:3300B resident on the SUNY Poly campus.


Journal of Micro-nanolithography Mems and Moems | 2016

Optical critical dimension metrology for directed self-assembly assisted contact hole shrink

Dhairya Dixit; Avery Green; Erik R. Hosler; Vimal Kamineni; Moshe Preil; Nick Keller; Joseph Race; Jun Sung Chun; Michael O’Sullivan; Prasanna Khare; Warren Montgomery; Alain C. Diebold

Abstract. Directed self-assembly (DSA) is a potential patterning solution for future generations of integrated circuits. Its main advantages are high pattern resolution (∼10  nm), high throughput, no requirement of high-resolution mask, and compatibility with standard fab-equipment and processes. The application of Mueller matrix (MM) spectroscopic ellipsometry-based scatterometry to optically characterize DSA patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) is described. A regression-based approach is used to calculate the guide critical dimension (CD), DSA CD, height of the PS column, thicknesses of underlying layers, and contact edge roughness of the post PMMA etch DSA contact hole sample. Scanning electron microscopy and imaging analysis is conducted as a comparative metric for scatterometry. In addition, optical model-based simulations are used to investigate MM elements’ sensitivity to various DSA-based contact hole structures, predict sensitivity to dimensional changes, and its limits to characterize DSA-induced defects, such as hole placement inaccuracy, missing vias, and profile inaccuracy of the PMMA cylinder.


Proceedings of SPIE | 2014

Methods of controlling cross-linking in negative-tone resists

Richard A. Lawson; Jun Sung Chun; Mark Neisser; Laren M. Tolbert; Clifford L. Henderson

Negative tone resists based on cross-linking via epoxide/cationic polymerization have a variety of potential advantages over more traditional positive tone resists based on photoacid catalyzed deprotection including low outgassing, intrinsic diffusion control, and improved pattern collapse performance through the higher modulus provided by a cross-linked network. Based on the promising baseline performance achieved previously in simple negative tone systems composed only of an epoxide functionalized molecular glass and a photoacid generator, a series of different methods and additives that can be used to control the extent and rate of cross-linking in such systems have been developed and are reported here which allow for even further improvement in resist performance. Simple addition of base quencher, as is used in conventional chemically amplified resists, is ineffective in these systems because the patterning reaction mechanism is different. Any control method must work by modifying the extent and rate of cationic polymerization of epoxides. By adding molecules containing phenolic OH groups to such an epoxide resist, one can slow the extent of cross-linking due to introduction of an additional reaction pathway and often a concomitant increase in the resist resin glass transition temperature. Generalized additives similar to base quencher were also developed based on the addition of strong nucleophiles such as triphenylphosphine which act essentially as chain termination agents. This approach allows for improved resolution and LER in negative tone epoxide resist systems. A more superior additive was developed that can be described as a photodecomposable nucleophile (PDN). The unexposed PDN acts similarly to the strong nucleophile additives in that it terminates chain propagation. Upon exposure, the PDN can act like a chain transfer agent or an additional initiator, but no longer has the effect of completely terminating chain propagation. This approach allows for high levels of control in the nominally unexposed regions of the resist, but maintains high efficiency of cross-linking in the most highly exposed regions. One particular implementation of a PDN used in this study is the blending of a PAG (i.e. triphenylsulfonium triflate, TPS-Tf) with a more nucleophilic anion that plays the role of a PDN, with the common and highly effective, non-nucleophilic PAG that is conventionally used in epoxide photopolymerizations (i.e. triphenylsulfonium hexafluoroantimonate, TPS-SbF6). Addition of only a few percent of TPS-Tf to a baseline epoxide resist formulation shows a 5-10 nm improvement in ultimate resolution and a reduction in LER to around 65% as compared to the baseline resist without the PDN additive while only incurring a moderate increase in imaging dose. By modulating the amount of the different polymerization control additives, the performance of a particular epoxide resist was improved from a resolution of greater than 30 nm half pitch and an LER of around 9 nm to a resolution of ~20 nm half pitch, with an LER of around 4 nm, and a sensitivity of 18 mJ/cm2. By increasing the additive loading even further, the resolution was improved to ~18 nm half pitch, although with an increase in imaging dose to 39 mJ/cm2.


Proceedings of SPIE | 2015

Evaluation of novel processing approaches to improve extreme ultraviolet (EUV) photoresist pattern quality

Cecilia Montgomery; Jun Sung Chun; Yu-Jen Fan; Shih-Hui Jen; Mark Neisser; Kevin Cummings; Warren Montgomery; Takashi Saito; Lior Huli; David Hetzer; Hiroie Matsumoto; Andrew Metz; Vinayak Rastogi

Recently there has been a great deal of effort focused on increasing EUV scanner source power; which is correlated to increased wafer throughput of production systems. Another way of increasing throughput would be to increase the photospeed of the photoresist used. However increasing the photospeed without improving the overall lithographic performance, such as local critical dimension uniformity (L-CDU) and process window, does not deliver the overall improvements required for a high volume manufacturing (HVM). This paper continues a discussion started in prior publications [Ref 3,4,6], which focused on using readily available process tooling (currently in use for 193 nm double patterning applications) and the existing EUV photoresists to increase photospeed (lower dose requirement) for line and space applications. Techniques to improve L-CDU for contact hole applications will also be described.


Proceedings of SPIE | 2015

The patterning center of excellence (CoE): an evolving lithographic enablement model

Warren Montgomery; Jun Sung Chun; Michael Liehr; Michael Tittnich

As EUV lithography moves toward high-volume manufacturing (HVM), a key need for the lithography materials makers is access to EUV photons and imaging. The SEMATECH Resist Materials Development Center (RMDC) provided a solution path by enabling the Resist and Materials companies to work together (using SUNY Polytechnic Institute’s Colleges of Nanoscale Science and Engineering (SUNY Poly CNSE) -based exposure systems), in a consortium fashion, in order to address the need for EUV photons. Thousands of wafers have been processed by the RMDC (leveraging the SUNY Poly CNSE/SEMATECH MET, SUNY Poly CNSE Alpha Demo Tool (ADT) and the SEMATECH Lawrence Berkeley MET) allowing many of the questions associated with EUV materials development to be answered. In this regard the activities associated with the RMDC are continuing. As the major Integrated Device Manufacturers (IDMs) have continued to purchase EUV scanners, Materials companies must now provide scanner based test data that characterizes the lithography materials they are producing. SUNY Poly CNSE and SEMATECH have partnered to evolve the RMDC into “The Patterning Center of Excellence (CoE)”. The new CoE leverages the capability of the SUNY Poly CNSE-based full field ASML 3300 EUV scanner and combines that capability with EUV Microexposure (MET) systems resident in the SEMATECH RMDC to create an integrated lithography model which will allow materials companies to advance materials development in ways not previously possible.


Proceedings of SPIE | 2014

Positive tone cross-linked resists based on photoacid inhibition of cross linking

Richard A. Lawson; Jun Sung Chun; Mark Neisser; Laren M. Tolbert; Clifford L. Henderson

A resist imaging design that utilizes photoacid inhibition of cationic polymerization and cross-linking during a postexposure bake step has been studied. The key to the design approach is the use of two different polymerization catalysts/initiators: (1) a photoacid produced from a photoacid generator (PAG) upon exposure of the resist that can result in polymerization and cross-linking of the resist matrix and (2) a thermal cross-linking catalyst (TCC) designed to thermally catalyze epoxide-phenol cross-linking. The TCC can be chosen from a variety of compounds such as triphenylphosphine (TPP) or imidazole. When only one of these catalysts (e.g TPP or photoacid) is present in an epoxide and phenol containing resist matrix, it will individually catalyze cross-linking. When they are present together, they effectively quench one another and little to no cross-linking occurs. This approach can be used to switch the tone of a resist from negative (photoacid catalyzed) to positive (TCC catalyzed and photoacid inhibited). The effect of the ratio of TCC:PAG was examined and the optimal ratio for positive tone behavior was determined. Resist contrast can be modified by optimization of epoxide:phenol ratio in the formulation. Dual tone behavior with positive tone at low dose and negative tone at higher doses can be observed in certain formulation conditions. Initial EUV patterning shows poor results, but the source of the poor imaging is not yet understood.


Proceedings of SPIE | 2015

New developments in ligand-stabilized metal oxide nanoparticle photoresists for EUV lithography

Christopher K. Ober; Jing Jiang; Ben Zhang; Li Li; Emmanuel P. Giannelis; Jun Sung Chun; Mark Neisser; Reyes Sierra-Alvares

The introduction of EUV lithography to manufacturing requires the development of both new EUV exposure tools and photoresists. The main challenges for photoresists are to achieve high resolution, and low roughness patterning at very high sensitivity given the limited intensity of current sources. A new class of photoresist formed from ligand-stabilized metal oxide nanoparticles shows extraordinary sensitivity for EUV lithography. These nanoparticles are processed in traditional organic solvents for both deposition and development as negative tone resist; positive tone images are possible if the aqueous base developer is used in addition to a post-exposure bake step. This paper presents new developments in the study of ligand-stabilized nanoparticle photoresists for EUV lithography. It is our current understanding that a key aspect of the solubility change of these photoresists during exposure involves ligand displacement by anions generated from photoactive compounds such as sulfonic acid photoacid generators. Both positive and negative tone patterning are possible and depend on thermal treatment history and choice of developer. On the basis of a non-chemically amplified ligand exchange mechanism, new resist structures were created. Both aromatic and aliphatic carboxylic acids with different functional groups have been studied in the formation of the nanoparticles and include dimethylacrylic acid, isobutyric acid, toluic acid. It has been shown that those nanoparticles with higher binding affinity ligands show better resolution and line edge roughness under EUV exposure. Some formulations demonstrate EUV sensitivity as high as 1.4 mJ/cm2, while other formulations demonstrate that improved LER values of 3-5nm. The overall resolution, sensitivity and roughness tradeoff has been evaluated and provides an understanding of structure - property relationships. In this paper, we also discuss major efforts on the further understanding of the patterning mechanism. By testing the dissolution rate and plotting it in Hansen interaction triangles, we can compare the differences between different formulations and choose a suitable developer for each formulation. We also used the dissolution rate study to confirm the important role of PAG and ligand exchange for pattern formation. In addition, aspects of the EHS properties of these new photoresists have been investigated and will be discussed.


Proceedings of SPIE | 2015

Systematic study of ligand structures of metal oxide EUV nanoparticle photoresists

Jing Jiang; Mufei Yu; Ben Zhang; Mark Neisser; Jun Sung Chun; Emmanuel P. Giannelis; Christopher K. Ober

Ligand stabilized metal oxide nanoparticle resists are promising candidates for EUV lithography due to their high sensitivity for high-resolution patterning and high etching resistance. As ligand exchange is responsible for the patterning mechanism, we systematically studied the influence of ligand structures of metal oxide EUV nanoparticles on their sensitivity and dissolution behavior. ZrO2 nanoparticles were protected with various aromatic ligands with electron withdrawing and electron donating groups. These nanoparticles have lower sensitivity compared to those with aliphatic ligands suggesting the structures of these ligands is more important than their pka on resist sensitivity. The influence of ligand structure was further studied by comparing the nanoparticles’ solubility for a single type ligand to mixtures of ligands. The mixture of nanoparticles showed improved pattern quality.


Proceedings of SPIE | 2015

First results of outgas resist family test and correlation between outgas specifications and EUV resist development

Yu-Jen Fan; Ken Maruyama; Ramakrishnan Ayothi; Takehiko Naruoka; Tonmoy Chakraborty; Dominic Ashworth; Jun Sung Chun; Cecilia Montgomery; Shih-Hui Jen; Mark Neisser; Kevin Cummings

In this paper, we present the first results of witness sample based outgas resist family test to improve the efficiency of outgas testing using EUV resists that have shown proven imaging performance. The concept of resist family testing is to characterize the boundary conditions of outgassing scale from three major components for each resist family. This achievement can significantly reduce the cost and improve the resist outgas learning cycle. We also report the imaging performance and outgas test results of state of the art resists and discuss the consequence of the resist development with recent change of resist outgassing specifications. Three chemically amplified resists selected from higher outgassing materials are investigated, but no significant improvement in resist performance is observed.


Proceedings of SPIE | 2015

Optical CD metrology for directed self-assembly assisted contact hole shrink process

Dhairya Dixit; Erik R. Hosler; Moshe Preil; Nick Keller; Joseph Race; Jun Sung Chun; Michael O’Sullivan; M. Warren Montgomery; Alain C. Diebold

Simulations of Mueller matrix spectroscopic ellipsometry (MMSE) based scatterometry are used to predict sensitivity to dimensional changes and defects in directed self-assembly (DSA) patterned contact hole structures fabricated with phase-separated polystyrene-b-polymethylmethacrylate (PS-b-PMMA) before and after etch. The optical signature of Mueller matrix (MM) elements has a complex dependence on the structure topography and orientation, depolarization, and optical properties of the materials associated with the surface and any underlying layers. Moreover, the symmetry properties associated with MM elements provide an excellent means of measuring and understanding the topography of periodic nanostructures. A forward problem approach to scatterometry or optical model based simulations is used to investigate MMSE sensitivity to various DSA based contact hole structures and its limits to characterize DSA induced defects such as hole placement inaccuracy, missing vias, profile inaccuracy of the PMMA cylinder, and process induced defects such as presence of residual PMMA after etching.

Collaboration


Dive into the Jun Sung Chun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Li Li

East China University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alain C. Diebold

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Clifford L. Henderson

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge