Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kristin F. Degnes is active.

Publication


Featured researches published by Kristin F. Degnes.


Applied and Environmental Microbiology | 2010

Production of a New Thiopeptide Antibiotic, TP-1161, by a Marine Nocardiopsis Species

Kerstin Engelhardt; Kristin F. Degnes; Michael Kemmler; Harald Bredholt; Espen Fjærvik; Geir Klinkenberg; Håvard Sletta; Trond E. Ellingsen; Sergey B. Zotchev

ABSTRACT Twenty-seven marine sediment- and sponge-derived actinomycetes with a preference for or dependence on seawater for growth were classified at the genus level using molecular taxonomy. Their potential to produce bioactive secondary metabolites was analyzed by PCR screening for genes involved in polyketide and nonribosomal peptide antibiotic synthesis. Using microwell cultures, conditions for the production of antibacterial and antifungal compounds were identified for 15 of the 27 isolates subjected to this screening. Nine of the 15 active extracts were also active against multiresistant Gram-positive bacterial and/or fungal indicator organisms, including vancomycin-resistant Enterococcus faecium and multidrug-resistant Candida albicans. Activity-guided fractionation of fermentation extracts of isolate TFS65-07, showing strong antibacterial activity and classified as a Nocardiopsis species, allowed the identification and purification of the active compound. Structure elucidation revealed this compound to be a new thiopeptide antibiotic with a rare aminoacetone moiety. The in vitro antibacterial activity of this thiopeptide, designated TP-1161, against a panel of bacterial strains was determined.


Fems Microbiology Letters | 2009

A plasmid RK2-based broad-host-range cloning vector useful for transfer of metagenomic libraries to a variety of bacterial species

Trine Aakvik; Kristin F. Degnes; Rannveig Dahlsrud; Frank Schmidt; Ragnar Dam; Lihua Yu; Uwe Völker; Trond E. Ellingsen; Svein Valla

The majority of microorganisms in natural environments are difficult to cultivate, but their genes can be studied via metagenome libraries. To enhance the chances that these genes become expressed we here report the construction of a broad-host-range plasmid vector (pRS44) for fosmid and bacterial artificial chromosome (BAC) cloning. pRS44 can be efficiently transferred to numerous hosts by conjugation. It replicates in such hosts via the plasmid RK2 origin of replication, while in Escherichia coli it replicates via the plasmid F origin. The vector was found to be remarkably stable due to the insertion of an additional stability element (parDE). The copy number of pRS44 is adjustable, allowing for easy modifications of gene expression levels. A fosmid metagenomic library consisting of 20 000 clones and BAC clones with insert sizes up to 200 kb were constructed. The 16S rRNA gene analysis of the fosmid library DNA confirmed that it represents a variety of microbial species. The entire fosmid library and the selected BAC clones were transferred to Pseudomonas fluorescens and Xanthomonas campestris (fosmids only), and heterologous proteins from the fosmid library were confirmed to be expressed in P. fluorescens. To our knowledge no other reported vector system has a comparable potential for functional screening across species barriers.


Journal of Bacteriology | 2005

Role of the Pseudomonas fluorescens Alginate Lyase (AlgL) in Clearing the Periplasm of Alginates Not Exported to the Extracellular Environment

Karianne Bakkevig; Håvard Sletta; Martin Gimmestad; Randi Aune; Helga Ertesvåg; Kristin F. Degnes; Bjørn E. Christensen; Trond E. Ellingsen; Svein Valla

Alginate is an industrially widely used polysaccharide produced by brown seaweeds and as an exopolysaccharide by bacteria belonging to the genera Pseudomonas and Azotobacter. The polymer is composed of the two sugar monomers mannuronic acid and guluronic acid (G), and in all these bacteria the genes encoding 12 of the proteins essential for synthesis of the polymer are clustered in the genome. Interestingly, 1 of the 12 proteins is an alginate lyase (AlgL), which is able to degrade the polymer down to short oligouronides. The reason why this lyase is associated with the biosynthetic complex is not clear, but in this paper we show that the complete lack of AlgL activity in Pseudomonas fluorescens in the presence of high levels of alginate synthesis is toxic to the cells. This toxicity increased with the level of alginate synthesis. Furthermore, alginate synthesis became reduced in the absence of AlgL, and the polymers contained much less G residues than in the wild-type polymer. To explain these results and other data previously reported in the literature, we propose that the main biological function of AlgL is to degrade alginates that fail to become exported out of the cell and thereby become stranded in the periplasmic space. At high levels of alginate synthesis in the absence of AlgL, such stranded polymers may accumulate in the periplasm to such an extent that the integrity of the cell is lost, leading to the observed toxic effects.


Chemistry & Biology | 2009

Biosynthesis of Macrolactam BE-14106 Involves Two Distinct PKS Systems and Amino Acid Processing Enzymes for Generation of the Aminoacyl Starter Unit

Hanne Jørgensen; Kristin F. Degnes; Håvard Sletta; Espen Fjærvik; Alexander Dikiy; Lars Herfindal; Per Bruheim; Geir Klinkenberg; Harald Bredholt; Gyrid Nygård; Stein Ove Døskeland; Trond E. Ellingsen; Sergey B. Zotchev

BE-14106 is a macrocyclic lactam with an acyl side chain previously identified in a marine-derived Streptomyces sp. The gene cluster for BE-14106 biosynthesis was cloned from a Streptomyces strain newly isolated from marine sediments collected in the Trondheimsfjord (Norway). Bioinformatics and experimental analyses of the genes in the cluster suggested an unusual mechanism for assembly of the molecule. Biosynthesis of the aminoacyl starter apparently involves the concerted action of a distinct polyketide synthase (PKS) system and several enzymes that activate and process an amino acid. The resulting starter unit is loaded onto a second PKS complex, which completes the synthesis of the macrolactam ring. Gene inactivation experiments, enzyme assays with heterologously expressed proteins, and feeding studies supported the proposed model for the biosynthesis and provided new insights into the assembly of macrolactams with acyl side chain.


Chemistry & Biology | 2008

Improved Antifungal Polyene Macrolides via Engineering of the Nystatin Biosynthetic Genes in Streptomyces noursei

Trygve Brautaset; Håvard Sletta; Aina Nedal; Sven E. F. Borgos; Kristin F. Degnes; Ingrid Bakke; Olga Volokhan; Olga N. Sekurova; Ivan D. Treshalin; Elena P. Mirchink; Alexander Dikiy; Trond E. Ellingsen; Sergey B. Zotchev

Seven polyene macrolides with alterations in the polyol region and exocyclic carboxy group were obtained via genetic engineering of the nystatin biosynthesis genes in Streptomyces noursei. In vitro analyses of the compounds for antifungal and hemolytic activities indicated that combinations of several mutations caused additive improvements in their activity-toxicity properties. The two best analogs selected on the basis of in vitro data were tested for acute toxicity and antifungal activity in a mouse model. Both analogs were shown to be effective against disseminated candidosis, while being considerably less toxic than amphotericin B. To our knowledge, this is the first report on polyene macrolides with improved in vivo pharmacological properties obtained by genetic engineering. These results indicate that the engineered nystatin analogs can be further developed into antifungal drugs for human use.


Applied and Environmental Microbiology | 2010

Isolation and Characterization of the Gene Cluster for Biosynthesis of the Thiopeptide Antibiotic TP-1161

Kerstin Engelhardt; Kristin F. Degnes; Sergey B. Zotchev

ABSTRACT Recently, we isolated a new thiopeptide antibiotic, TP-1161, from the fermentation broth of a marine actinomycete typed as a member of the genus Nocardiopsis. Here we report the identification, isolation, and analysis of the TP-1161 biosynthetic gene cluster from this species. The gene cluster was identified by mining a draft genome sequence using the predicted structural peptide sequence of TP-1161. Functional assignment of a ∼16-kb genomic region revealed 13 open reading frames proposed to constitute the TP-1161 biosynthetic locus. While the typical core set of thiopeptide modification enzymes contains one cyclodehydratase/dehydrogenase pair, paralogous genes predicted to encode additional cyclodehydratases and dehydrogenases were identified. Although attempts at heterologous expression of the TP-1161 gene cluster in Streptomyces coelicolor failed, its identity was confirmed through the targeted gene inactivation in the original host.


Applied and Environmental Microbiology | 2009

Overexpression of Wild-Type Aspartokinase Increases l-Lysine Production in the Thermotolerant Methylotrophic Bacterium Bacillus methanolicus

Øyvind M. Jakobsen; Trygve Brautaset; Kristin F. Degnes; Tonje Marita Bjerkan Heggeset; Simone Balzer; Michael C. Flickinger; Svein Valla; Trond E. Ellingsen

ABSTRACT Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar Vmax values (between 47 and 58 μmol/min/mg protein) and Km values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC50], 0.1 mM) and by l-lysine (IC50, 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC50, 4 mM) and by l-lysine (IC50, 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.


Applied and Environmental Microbiology | 2011

New Nystatin-Related Antifungal Polyene Macrolides with Altered Polyol Region Generated via Biosynthetic Engineering of Streptomyces noursei

Trygve Brautaset; Håvard Sletta; Kristin F. Degnes; Olga N. Sekurova; Ingrid Bakke; Olga Volokhan; Trygve Andreassen; Trond E. Ellingsen; Sergey B. Zotchev

ABSTRACT Polyene macrolide antibiotics, including nystatin and amphotericin B, possess fungicidal activity and are being used as antifungal agents to treat both superficial and invasive fungal infections. Due to their toxicity, however, their clinical applications are relatively limited, and new-generation polyene macrolides with an improved therapeutic index are highly desirable. We subjected the polyol region of the heptaene nystatin analogue S44HP to biosynthetic engineering designed to remove and introduce hydroxyl groups in the C-9-C-10 region. This modification strategy involved inactivation of the P450 monooxygenase NysL and the dehydratase domain in module 15 (DH15) of the nystatin polyketide synthase. Subsequently, these modifications were combined with replacement of the exocyclic C-16 carboxyl with the methyl group through inactivation of the P450 monooxygenase NysN. Four new polyene macrolides with up to three chemical modifications were generated, produced at relatively high yields (up to 0.51 g/liter), purified, structurally characterized, and subjected to in vitro assays for antifungal and hemolytic activities. Introduction of a C-9 hydroxyl by DH15 inactivation also blocked NysL-catalyzed C-10 hydroxylation, and these modifications caused a drastic decrease in both antifungal and hemolytic activities of the resulting analogues. In contrast, single removal of the C-10 hydroxyl group by NysL inactivation had only a marginal effect on these activities. Results from the extended antifungal assays strongly suggested that the 9-hydroxy-10-deoxy S44HP analogues became fungistatic rather than fungicidal antibiotics.


PLOS ONE | 2014

A New and Improved Host-Independent Plasmid System for RK2-Based Conjugal Transfer

Trine Aakvik Strand; Rahmi Lale; Kristin F. Degnes; Malin Lando; Svein Valla

Bacterial conjugation is a process that is mediated either by a direct cell-to-cell junction or by formation of a bridge between the cells. It is often used to transfer DNA constructs designed in Escherichia coli to recipient bacteria, yeast, plants and mammalian cells. Plasmids bearing the RK2/RP4 origin of transfer (oriT) are mostly mobilized using the E. coli S17-1/SM10 donor strains, in which transfer helper functions are provided from a chromosomally integrated RP4::Mu. We have observed that large plasmids were occasionally modified after conjugal transfer when using E. coli S17-1 as a donor. All modified plasmids had increased in size, which most probably was a result of co-transfer of DNA from the chromosomally located oriT. It has earlier also been demonstrated that the bacteriophage Mu is silently transferred to recipient cells by these donor strains, and both occurrences are very likely to lead to mutations within the recipient DNA. Here we report the construction of a new biological system addressing both the above mentioned problems in which the transfer helper functions are provided by a plasmid lacking a functional oriT. This system is compatible with all other replicons commonly used in conjugation experiments and further enables the use of diverse bacterial strains as donors. Plasmids containing large inserts were successfully conjugated and the plasmid modifications observed when E. coli S17-1 was used as donor were eliminated by the use of the new host-independent vector system.


Marine Drugs | 2013

Iodinin (1,6-Dihydroxyphenazine 5,10-Dioxide) from Streptosporangium sp. Induces Apoptosis Selectively in Myeloid Leukemia Cell Lines and Patient Cells

Lene Elisabeth Myhren; Gyrid Nygaard; Gro Gausdal; Håvard Sletta; Knut Teigen; Kristin F. Degnes; Kolbjørn Zahlsen; Anders Brunsvik; Øystein Bruserud; Stein Ove Døskeland; Frode Selheim; Lars Herfindal

Despite recent improvement in therapy, acute myeloid leukemia (AML) is still associated with high lethality. In the presented study, we analyzed the bioactive compound iodinin (1,6-dihydroxyphenazine 5,10-dioxide) from a marine actinomycetes bacterium for the ability to induce cell death in a range of cell types. Iodinin showed selective toxicity to AML and acute promyelocytic (APL) leukemia cells, with EC50 values for cell death up to 40 times lower for leukemia cells when compared with normal cells. Iodinin also successfully induced cell death in patient-derived leukemia cells or cell lines with features associated with poor prognostic such as FLT3 internal tandem duplications or mutated/deficient p53. The cell death had typical apoptotic morphology, and activation of apoptotic signaling proteins like caspase-3. Molecular modeling suggested that iodinin could intercalate between bases in the DNA in a way similar to the anti-cancer drug daunorubicin (DNR), causing DNA-strand breaks. Iodinin induced apoptosis in several therapy-resistant AML-patient blasts, but to a low degree in peripheral blood leukocytes, and in contrast to DNR, not in rat cardiomyoblasts. The low activity towards normal cell types that are usually affected by anti-leukemia therapy suggests that iodinin and related compounds represent promising structures in the development of anti-cancer therapy.

Collaboration


Dive into the Kristin F. Degnes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Svein Valla

Norwegian Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Trygve Brautaset

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Espen Fjærvik

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander Dikiy

Norwegian University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge