Kuen-Yu Tsai
National Taiwan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kuen-Yu Tsai.
Journal of Micro-nanolithography Mems and Moems | 2011
Philip C. W. Ng; Kuen-Yu Tsai; Yen-Min Lee; Fu-Min Wang; Jia-Han Li; Alek C. Chen
Extreme ultraviolet (EUV) lithography is a promising candidate for high-volume manufacturing at the 22-nm half-pitch node and beyond. EUV projection lithography systems need to rely on reflective optical elements and masks with oblique illumination for image formation. It leads to undesired effects such as pattern shift and horizontal-to-vertical critical dimension bias, which are generally reported as shadowing. Rule-based approaches proposed to compensate for shadowing include changing mask topography, introducing mask defocus, and biasing patterns differently at different slit positions. However, the electromagnetic interaction between the incident light and the mask topography with complicated geometric patterns, such as optical diffraction, not only causes shadowing but also induces proximity effects. This phenomenon cannot be easily taken into account by rule-based corrections and thus imposes a challenge on a partially model-based correction flow, the so-called combination of rule- and model-based corrections. A fully model-based correction flow, which integrates an in-house optical proximity correction algorithm with rigorous three-dimensional mask simulation, is proposed to simultaneously compensate for shadowing and proximity effects. Simulation results for practical circuit layouts indicate that the fully model-based correction flow significantly outperforms the partially model-based one in terms of correction accuracy, while the total run time is slightly increased.
Proceedings of SPIE | 2010
Ming-Shing Su; Kuen-Yu Tsai; Yi-Chang Lu; Yu-Hsuan Kuo; Ting-Hang Pei; Jia-Yush Yen
Electron-beam lithography is promising for future manufacturing technology because it does not suffer from wavelength limits set by light sources. Since single electron-beam lithography systems have a common problem in throughput, a multi-electron-beam lithography (MEBL) system should be a feasible alternative using the concept of massive parallelism. In this paper, we evaluate the advantages and the disadvantages of different MEBL system architectures, and propose our novel Massively Parallel MaskLess Lithography System, MPML2. MPML2 system is targeting for cost-effective manufacturing at the 32nm node and beyond. The key structure of the proposed system is its beamlet array cells (BACs). Hundreds of BACs are uniformly arranged over the whole wafer area in the proposed system. Each BAC has a data processor and an array of beamlets, and each beamlet consists of an electron-beam source, a source controller, a set of electron lenses, a blanker, a deflector, and an electron detector. These essential parts of beamlets are integrated using MEMS technology, which increases the density of beamlets and reduces the system cost. The data processor in the BAC processes layout information coming off-chamber and dispatches them to the corresponding beamlet to control its ON/OFF status. High manufacturing cost of masks is saved in maskless lithography systems, however, immense mask data are needed to be handled and transmitted. Therefore, data compression technique is applied to reduce required transmission bandwidth. The compression algorithm is fast and efficient so that the real-time decoder can be implemented on-chip. Consequently, the proposed MPML2 can achieve 10 wafers per hour (WPH) throughput for 300mm-wafer systems.
international conference on computer aided design | 2008
Kuen-Yu Tsai; Meng-Fu You; Yi-Chang Lu; Philip C. W. Ng
Non-ideal pattern transfer from drawn circuit layout to manufactured nanometer transistors can severely affect electrical characteristics such as drive current, leakage current, and threshold voltage. Obtaining accurate electrical models of non-rectangular transistors due to sub-wavelength lithography effects is indispensable for DFM-aware nanometer IC design. In this paper, TCAD device simulations are utilized to quantify the accuracy of a standard equivalent gate length extraction approach for non-rectangular transistors. It is verified that threshold voltage and current density are non-uniform along the channel width due to narrow-width related edge effects, leading to significant inaccuracy in the sub-threshold region. A new EGL extraction method utilizing location-dependent weighting factors and convex parameter extraction techniques is proposed to account for the current density non-uniformity. Preliminary results verified by TCAD simulations indicate that the accuracy of leakage current estimation for non-rectangular transistors can be significantly improved. The method is readily applicable to calibration with real silicon data.
Journal of Vacuum Science & Technology B | 2011
Sheng-Yung Chen; Kuen-Yu Tsai; Philip C. W. Ng; Hoi-Tou Ng; Chun-Hung Liu; Yu-Tian Shen; Chieh-Hsiung Kuan; Yung-Yaw Chen; Yi-Hung Kuo; Cheng-Ju Wu; Jia-Yush Yen
Electron-beam lithography is one of the promising candidates to replace optical projection lithography due to its high resolution and maskless direct-write capability. In order to achieve the throughput requirement for high-volume manufacturing, miniaturized electro-optics elements are utilized to drive massively parallel beams simultaneously. In high-throughput multiple-electron-beam systems, beam positioning drift problems can become quite serious due to several factors such as thermal distortion and fabrication errors of electron optics. In single-beam systems, periodic recalibration with reference markers on the wafer can be utilized to achieve beam placement accuracy. This technique is not easy for multiple-beam systems. In this article, an innovative in situ two-dimensional electron-beam position monitoring system for multiple-electron-beam lithography is studied. An array of miniaturized electron detectors to measure scattered electrons from the substrate is placed above the wafer. It is assumed that the detector array signals are correlated with the distribution of electron trajectories, and the change of trajectory distortion due to the beam drift can be predicted by Monte Carlo electron-scattering simulation. A standard quadrant detection (SQD) method and a linear least-squares (LLS) method are used to estimate the beam drift from the detector array signals. Simulation results indicate that while the estimation uncertainty of both methods can be reduced substantially when the number of detected electrons is large enough. The LLS method always outperforms the SQD one regardless the detected electron numbers.
Proceedings of SPIE | 2010
Chun-Hung Liu; Pei-Lin Tien; Philip C. W. Ng; Yu-Tian Shen; Kuen-Yu Tsai
A model-based proximity effect correction methodology is proposed and tested for electron-beam-direct-write lithography. It iteratively modulates layout geometry by feedback compensation until the correction error converges. The energy intensity distribution is efficiently calculated by fast convolving the modulated layout with a point-spread function which models electron beam shape and proximity effects primarily due to electron scattering in resist. The effectiveness of this methodology is measured by iteration numbers required for meeting the patterning fidelity specifications. It is examined versus process parameters including acceleration voltage and resist thickness with several regular mask geometries and practical design layouts.
Proceedings of SPIE, the International Society for Optical Engineering | 2008
Chun-Hung Liu; Hoi-Tou Ng; Philip C. W. Ng; Kuen-Yu Tsai; Shy-Jay Lin; Jeng-Homg Chen
Accelerating voltage as low as 5 kV for operation of the electron-beam micro-columns as well as solving the throughput problem is being considered for high-throughput direct-write lithography for the 22-nm half-pitch node and beyond. The development of efficient proximity effect correction (PEC) techniques at low-voltage is essential to the overall technology. For realization of this approach, a thorough understanding of electron scattering in solids, as well as precise data for fitting energy intensity distribution in the resist are needed. Although electron scattering has been intensively studied, we found that the conventional gradient based curve-fitting algorithms, merit functions, and performance index (PI) of the quality of the fit were not a well posed procedure from simulation results. Therefore, we proposed a new fitting procedure adopting a direct search fitting algorithm with a novel merit function. This procedure can effectively mitigate the difficulty of conventional gradient based curve-fitting algorithm. It is less sensitive to the choice of the trial parameters. It also avoids numerical problems and reduces fitting errors. We also proposed a new PI to better describe the quality of the fit than the conventional chi-square PI. An interesting result from applying the proposed procedure showed that the expression of absorbed electron energy density in 5keV cannot be well represented by conventional multi-Gaussian models. Preliminary simulation shows that a combination of a single Gaussian and double exponential functions can better represent low-voltage electron scattering.
Journal of Micro-nanolithography Mems and Moems | 2012
Chun-Hung Liu; Hoi-Tou Ng; Kuen-Yu Tsai
Electron-beam-direct-write lithography has been considered a candidate next-generation technique for achieving high resolution. An accurate point spread function (PSF) is essential for reliable patterning prediction and proximity-effects correction. It can be derived via an effective parametric PSF calibration methodology, typically involving the fitting of the absorbed energy distribution (AED) from an electron-scattering simulation. However, the existing parametric PSF calibration methodology does not employ a systematic approach to obtain a new PSF form that is both compact and accurate when conventional PSF forms are not satisfactory. Only the AED fitting quality (rather than its patterning-prediction quality) is considered during the conventional calibration methodology. It also lacks a process to consider whether the predicted deviation (as simulated using the chosen PSF form) is satisfactory. This paper proposes a new parametric PSF calibration methodology to systematically obtain a PSF form consisting of the smallest number of terms, with a better combination of basis functions and that optimizes pattern accuracy. The effectiveness of using the new methodology is demonstrated in terms of fitting accuracy, patterning-prediction accuracy, and patterning sensitivity.
Japanese Journal of Applied Physics | 2010
Sheng-Yung Chen; Shin-Chuan Chen; Hsing-Hong Chen; Kuen-Yu Tsai; Hsin-Hung Pan
Multiple-electron-beam–direct-write lithography is one promising candidate for next-generation lithography because of its high resolution and ability of maskless operation. To achieve the throughput for high-volume manufacturing, miniaturized electro-optics elements are utilized to drive massively parallel beams simultaneously. Fabrication errors and uniformity of the elements can be serious issues in multiple-beam systems. Traditionally, electron optical systems (EOSs) are assembled and tested directly after the elements are fabricated. The yield by this technique can degrade significantly with multiple beams. In this work, a new EOS design-to-manufacturing flow which takes fabrication errors into account before the assembly process is proposed. The errors and imperfect components can be clearly screened by rigorous electron trajectory simulation. The effectiveness of the proposed approach is demonstrated with an fabricated electron-optical-objective-lens subject to imperfect hole profiles and substrate topography. Simulation results indicate that its EOS performances are acceptable even with significant fabrication errors.
Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena | 2013
Chun-Hung Liu; Philip C. W. Ng; Yu-Tian Shen; Sheng-Wei Chien; Kuen-Yu Tsai
Electron-beam–direct-write lithography at lower accelerating voltages has been considered as a candidate for next-generation lithography. Although long-range proximity effects are substantially reduced with the voltage, proximity effect correction (PEC) is still necessary since short-range proximity effects are relatively prominent. The effectiveness of model-based PEC can be limited severely if an inaccurate point spread function (PSF) characterizing electron scattering within resist is adopted. Recently, a new PSF form using a promising calibration method has been developed to more accurately characterize the electron scattering and thus significantly improve patterning fidelity at 5 keV. However, influences of adopting the conventional and new PSF forms for the usage of patterning practical circuit layouts have not been intensively studied. This work extensively investigates impacts of PSF accuracy on patterning prediction and PEC under different resist thickness conditions suitable for various lithogr...
Proceedings of SPIE | 2007
Meng-Fu You; Philip C. W. Ng; Yi-Sheng Su; Kuen-Yu Tsai; Yi-Chang Lu
Due to non-ideal optical effects such as aberration and optical diffraction, printed poly gates on the wafer suffer from across-gate linewidth variation (AGLV) and across-chip linewidth variation (ACLV,) especially in the subwavelength regime. The poly gate distortion affects device electrical characteristics, including drive current (Ion), leakage current (Ioff), and threshold voltage (Vt). For circuits sensitive to layout, such as compact memory cells, electrical performances can vary with image distortion of each transistor even after applying resolution enhancement technologies (RETs) such as optical proximity corrections. In this paper, we demonstrate the impact of OPC settings on the performance of 6T-SRAM cells. The printed transistor gate and active region patterns are simulated by an in-house OPC engine. The device model for each distorted transistor is then extracted based on approximating each distorted channel pattern with a set of smaller rectangles. Consequently, Electrical performance such as static noise margin (SNM) can be obtained by incorporating these extracted device models into a circuit simulator. Preliminary results show that OPC settings such as segmentation length and numbers of corrections can affect wafer image quality and electrical performance in different ways.