Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L.H. de Jonge is active.

Publication


Featured researches published by L.H. de Jonge.


Journal of Dairy Science | 2008

Effect of in vitro docosahexaenoic acid supplementation to marine algae-adapted and unadapted rumen inoculum on the biohydrogenation of unsaturated fatty acids in freeze-dried grass

Bruno Vlaeminck; G Mengistu; Veerle Fievez; L.H. de Jonge; J. Dijkstra

The objective of this study was to examine the ruminal biohydrogenation of linoleic (18:2n-6) and linolenic (18:3n-3) acid during in vitro incubations with rumen inoculum from dairy cattle adapted or not to marine algae and with or without additional in vitro docosahexaenoic acid (DHA, 22:6n-3) supplementation. Treatments were incubated in 100-mL flasks containing 400 mg of freeze-dried grass, 5 mL of strained ruminal fluid, and 20 mL of phosphate buffer. Ruminal fluid was collected just before the morning feeding from 3 cows receiving a control diet (49% ryegrass silage, 39% corn silage, 1% straw, and 11% concentrate, fresh-weight basis) supplemented with marine algae for 21 d (adapted rumen fluid, aRF) or from the same cows receiving the control diet only for 14 d after marine algae supplementation was stopped (unadapted rumen fluid, uRF). In half of the incubation flasks, pure DHA (5 mg) was added as an oil-ethanol solution (100 mL). Incubations were carried out during 0, 0.5, 1, 2, 4, 6, and 24 h. After 24 h, in vitro addition of DHA resulted in greater amounts (mg/incubation) of 18:3n-3 (0.23, 0.43, 0.26, and 0.34 for aRF, aRF+DHA, uRF, and uRF+DHA), 18:2n-6 (0.14, 0.22, 0.15, and 0.20 for aRF, aRF+DHA, uRF, and uRF+DHA) and trans-11, cis-15-18:2 (0.27, 2.40, 0.06, and 2.21 for aRF, aRF+DHA, uRF, and uRF+DHA), whereas no effect of inoculum source was observed. Trans-11-18:1 accumulated after 24 h when aRF was incubated irrespective of in vitro DHA supplementation, whereas in incubations with uRF, accumulation of trans-11-18:1 only occurred when DHA was added (6.40, 4.35, 1.06, and 3.91 for aRF, aRF+DHA, uRF, and uRF+DHA). The increased amounts of trans-11-18:1 were due to the strong inhibition of the reduction to 18:0 because no 18:0 was formed when trans-11-18:1 accumulated after 24 h. The results of the current experiment shows hydrogenation of trans-11, cis-15-18:2 occurred in the absence of in vitro DHA only, whereas substantial hydrogenation of trans-11-18:1 to 18:0 only took place in incubations without DHA and with unadapted rumen inoculum, confirming the higher sensitivity of the latter process to DHA.


Journal of Dairy Science | 2016

Increasing harvest maturity of whole-plant corn silage reduces methane emission of lactating dairy cows

B. Hatew; A. Bannink; H.H. van Laar; L.H. de Jonge; J. Dijkstra

The objective of this study was to investigate the effects of increasing maturity of whole-plant corn at harvest on CH4 emissions by dairy cows consuming corn silage (CS) based diets. Whole-plant corn was harvested at a very early [25% dry matter (DM); CS25], early (28% DM; CS28), medium (32% DM; CS32), and late (40% DM; CS40) stage of maturity. In a randomized block design, 28 lactating Holstein-Friesian dairy cows, of which 8 were fitted with rumen cannula, received 1 of 4 dietary treatments designated as T25, T28, T32, and T40 to reflect the DM contents at harvest. Treatments consisted of (DM basis) 75% CS, 20% concentrate, and 5% wheat straw. Feed intake, digestibility, milk production and composition, energy and N balance, and CH4 production were measured during a 5-d period in climate respiration chambers after an adaptation to the diet for 12 d. Corn silage starch content varied between 275 (CS25) and 385 (CS40) g/kg of DM. Treatments did not affect DM intake (DMI), milk yield, or milk contents. In situ ruminal fractional degradation rate of starch decreased linearly from 0.098 to 0.059/h as maturity increased from CS25 to CS40. Apparent total-tract digestibility of DM, organic matter, crude protein, neutral detergent fiber, crude fat, starch, and gross energy (GE) decreased linearly with maturity. Treatments did not affect ruminal pH, volatile fatty acids, and ammonia concentrations, and volatile fatty acids molar proportions. The concentration of C18:3n-3 in milk fat decreased linearly, and the concentration of C18:2n-6 and the n-6:n-3 ratio increased linearly with maturity. A quadratic response occurred for the total saturated fatty acid concentration and total monounsaturated fatty acid concentration in milk fat. Methane production relative to DMI (21.7, 23.0, 21.0, and 20.1g/kg) and relative to GE intake (0.063, 0.067, 0.063, and 0.060 MJ/MJ; values for T25, T28, T32, and T40, respectively) decreased linearly with maturity. Also, CH4 emission relative to fat- and protein-corrected milk tended to decrease linearly with maturity (13.0, 13.4, 13.2, and 12.1g/kg of fat- and protein-corrected milk, for T25, T28, T32, and T40, respectively). Intake of GE and metabolizable energy, and energy retained, all expressed per unit of metabolic body weight, did not differ among treatments. Nitrogen intake, N use efficiency (milk N/N intake), and N balance were not influenced by treatments. Increasing maturity of whole-plant corn at harvest may offer an effective strategy to decrease CH4 losses with feeding CS without negatively affecting cow performance.


Animal Production Science | 2014

Rumen degradation characteristics of ryegrass herbage and ryegrass silage are affected by interactions between stage of maturity and nitrogen fertilisation rate

J. A. H. Heeren; S.C. Podesta; B. Hatew; G. Klop; H.H. van Laar; A. Bannink; D. Warner; L.H. de Jonge; J. Dijkstra

The objective of this experiment was to evaluate interaction effects between stage of maturity and nitrogen (N) fertilisation rate on rumen degradation characteristics determined with nylon bag incubations of ryegrass herbages and ryegrass silage. Grass herbage (n = 4) was cut after 3 or 5 weeks of regrowth and received a low (20 kg N/ha) or a high (90 kg N/ha) fertilisation rate. Grass silage (n = 6) received a low (65 kg N/ha) or high (150 kg N/ha) fertilisation rate and was harvested at early (~2000 kg DM/ha), mid (harvested 13 days later), or late (harvested 34 days later) maturity stage and ensiled in big bales. All grasses were incubated in the rumen of three lactating rumen-cannulated Holstein Friesian cows. Rumen degradation characteristics of organic matter (OM), N and neutral detergent fibre (NDF) and the extent of effective degradation (ED) were evaluated. In grass herbage, NDF content varied between 390 and 454 g/kg DM and N content between 12.1 and 25.8 g/kg DM. In grass silage, NDF content varied between 438 and 593 g/kg DM and N content between 13.4 and 34.8 g/kg DM. In general, rumen degradation of grass herbage and grass silage decreased with increased maturity, and increased with increased fertilisation rate. Significant interaction between maturity and fertilisation rate was observed for ED of OM, N and NDF, except for ED of N in grass herbage. These results indicate that the effect of the rate of N fertilisation on degradation of nutrients in the rumen of dairy cattle and on nutritional value depends on the grass maturity stage.


Animal | 2013

A modified rinsing method for the determination of the S, W-S and D + U fraction of protein and starch in feedstuff within the in situ technique

L.H. de Jonge; H.H. van Laar; W.H. Hendriks; J. Dijkstra

A modified rinsing method for the in situ technique was developed to separate, isolate and characterise the soluble (S), the insoluble washout (W-S) and the non-washout fractions (D + U) within one procedure. For non-incubated bags (t = 0 h), this method was compared with the conventional, Combined Fractionation (CF) method that measures the D + U and S fractions in separate steps and subsequently calculates the W-S fraction. The modified method was based on rinsing of nylon bags in a closed vessel containing a buffer solution (pH 6.2) during 1 h, where shaking speeds of 40, 100, and 160 strokes per minutes (spm) were evaluated, and tested for six feed ingredients (faba beans, maize, oats, peas, soya beans and wheat) and four forages (two ryegrass silages and two maize silages). The average recoveries as the sum of all fractions were 0.972 ± 0.041 for N and 0.990 ± 0.050 for starch (mean ± s.d.). The mean W-S fraction increased with increasing shaking speed and varied between 0.017 (N) and 0.083 (starch) at 40 spm and 0.078 (N) and 0.303 (starch) at 160 spm, respectively. For ryegrass silages, the W-S fraction was absent at all shaking speeds, but was present in the CF method. The modified method, in particular at 40 and 100 spm, reduced the loss of small particles during rinsing, resulting in lower W-S and higher D + U fractions for N and starch compared with the CF method. For soya beans and ryegrass silage, the modified method reduced the S fraction of N compared with the CF method. The results obtained at 160 spm showed the best comparison with those from the CF method. The W-S fraction of the feedstuff obtained at 160 spm contained mainly particles smaller than 40 μm (0.908 ± 0.086). In most feedstuff, starch was the most abundant chemical component in the W-S fraction and its content (726 ± 75 g/kg DM) was higher than in the D + U fraction (405 ± 177 g/kg DM). Alkaline-soluble proteins were the dominant N-containing components in the W-S fraction of dry feed ingredients and its relative content (0.79 ± 0.18 of total N in W-S) was higher than in the D + U fraction (0.59 ± 0.07 of total N in D + U) for all feedstuff except maize. The molecular weight distribution of the alkaline-soluble proteins differed between the W-S and the D + U fractions of all dry feed ingredients, except soya beans and wheat.


Animal | 2015

A new approach to estimate the in situ fractional degradation rate of organic matter and nitrogen in wheat yeast concentrates

L.H. de Jonge; H.H. van Laar; W.H. Hendriks; J. Dijkstra

In the classic in situ method, small particles are removed during rinsing and hence their fractional degradation rate cannot be determined. A new approach was developed to estimate the fractional degradation rate of nutrients in small particles. This approach was based on an alternative rinsing method to reduce the particulate matter loss during rinsing and on quantifying the particulate matter loss that occurs during incubation in the rumen itself. To quantify particulate matter loss during incubation, loss of small particles during the in situ incubation was studied using undegradable silica with different particle sizes. Particulate matter loss during incubation was limited to particles smaller than ~40 μm with a mean fractional particulate matter loss rate of 0.035 h-1 (first experiment) and 0.073 h-1 (second experiment) and an undegradable fraction of 0.001 and 0.050, respectively. In the second experiment, the fractional particulate matter loss rate after rinsing in a water bath at 50 strokes per minute (s.p.m.) (0.215 h-1) and the undegradable fraction at 20 s.p.m. (0.461) were significantly larger than that upon incubation in the rumen, whereas the fractional particulate matter loss rate (0.140 and 0.087 h-1, respectively) and the undegradable fraction (0.330 and 0.075, respectively) after rinsing at 30 and 40 s.p.m. did not differ with that upon rumen incubation. This new approach was applied to estimate the in situ fractional degradation rate of insoluble organic matter (OM) and insoluble nitrogen (N) in three different wheat yeast concentrates (WYC). These WYC were characterised by a high fraction of small particles and estimating their fractional degradation rate was not possible using the traditional washing machine rinsing method. The new rinsing method increased the mean non-washout fraction of OM and N in these products from 0.113 and 0.084 (washing machine method) to 0.670 and 0.782, respectively. The mean effective degradation (ED) without correction for particulate matter loss of OM and of N was 0.714 and 0.601, respectively, and significant differences were observed between the WYC products. Applying the correction for particulate matter loss reduced the mean ED of OM to 0.676 (30 s.p.m.) and 0.477 (40 s.p.m.), and reduced the mean ED of N to 0.475 (30 s.p.m.) and 0.328 (40 s.p.m.). These marked reductions in fractional degradation rate upon correction for small particulate matter loss emphasised the pronounced effect of correction for undegraded particulate matter loss on the fractional disappearance rates of OM and N in WYC products.


Animal | 2015

Estimation of the in situ degradation of the washout fraction of starch by using a modified in situ protocol and in vitro measurements

L.H. de Jonge; H.H. van Laar; J. Dijkstra

The in situ degradation of the washout fraction of starch in six feed ingredients (i.e. barley, faba beans, maize, oats, peas and wheat) was studied by using a modified in situ protocol and in vitro measurements. In comparison with the washing machine method, the modified protocol comprises a milder rinsing method to reduce particulate loss during rinsing. The modified method markedly reduced the average washout fraction of starch in these products from 0.333 to 0.042 g/g. Applying the modified rinsing method, the fractional degradation rate (k d ) of starch in barley, oats and wheat decreased from on average 0.327 to 0.144 h-1 whereas for faba beans, peas and maize no differences in k d were observed compared with the traditional washing machine rinsing. For barley, maize and wheat, the difference in non-fermented starch in the residue between both rinsing methods during the first 4 h of incubation increased, which indicates secondary particle loss. The average effective degradation of starch decreased from 0.761 to 0.572 g/g when using the new rinsing method and to 0.494 g/g when applying a correction for particulate matter loss during incubation. The in vitro k d of starch in the non-washout fraction did not differ from that in the total product. The calculated ratio between the k d of starch in the washout and non-washout fraction was on average 1.59 and varied between 0.96 for oats and 2.39 for maize. The fractional rate of gas production was significantly different between the total product and the non-washout fraction. For all products, except oats, this rate of gas production was larger for the total product compared with the non-washout fraction whereas for oats the opposite was observed. The rate of increase in gas production was, especially for grains, strongly correlated with the in vitro k d of starch. The results of the present study do not support the assumption used in several feed evaluation systems that the degradation of the washout fraction of starch in the rumen is much faster than that of the non-washout fraction.


Livestock Production Science | 2005

Physico-chemical characteristics and degradation rate of soluble protein obtained from the washout fraction of feeds

M. Gierus; L.H. de Jonge; G.A.L. Meijer


Animal Feed Science and Technology | 2009

Effects of pH, temperature and osmolality on the level and composition of soluble N in feedstuffs for ruminants

L.H. de Jonge; J.W. Spek; H.H. van Laar; J. Dijkstra


Animal Feed Science and Technology | 2012

Effects of temperature, pH, incubation time and pepsin concentration on the in vitro stability of intrinsic phytase of wheat, barley and rye

O. Esmaeilipour; M.M. van Krimpen; A.W. Jongbloed; L.H. de Jonge; P. Bikker


Animal Feed Science and Technology | 2013

The effects of temperature, moisture, duration of incubation time, calcium level, and soaking with water or citric acid on in vitro phytate degradation in a wheat–barley–rye–soybean meal-based diet

O. Esmaeilipour; M.M. van Krimpen; A.W. Jongbloed; L.H. de Jonge; P. Bikker

Collaboration


Dive into the L.H. de Jonge's collaboration.

Top Co-Authors

Avatar

J. Dijkstra

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

H.H. van Laar

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

M.M. van Krimpen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

P. Bikker

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

W.H. Hendriks

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A. Bannink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A.W. Jongbloed

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

B. Hatew

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

J.W. Spek

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

D. Warner

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge