Lana Saleh
New England Biolabs
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lana Saleh.
Science | 2007
Wei Jiang; Danny Yun; Lana Saleh; Eric W. Barr; Gang Xing; Lee M. Hoffart; Monique-Anne Maslak; Carsten Krebs; J. Martin Bollinger
In a conventional class I ribonucleotide reductase (RNR), a diiron(II/II) cofactor in the R2 subunit reacts with oxygen to produce a diiron(III/IV) intermediate, which generates a stable tyrosyl radical (Y⚫). The Y⚫ reversibly oxidizes a cysteine residue in the R1 subunit to a cysteinyl radical (C⚫), which abstracts the 3′-hydrogen of the substrate to initiate its reduction. The RNR from Chlamydia trachomatis lacks the Y⚫, and it had been proposed that the diiron(III/IV) complex in R2 directly generates the C⚫ in R1. By enzyme activity measurements and spectroscopic methods, we show that this RNR actually uses a previously unknown stable manganese(IV)/iron(III) cofactor for radical initiation.
Nature | 2014
Hideharu Hashimoto; June E. Pais; Xing Zhang; Lana Saleh; Zhengqing Fu; Nan Dai; Ivan R. Corrêa; Yu Long Zheng; Xiaodong Cheng
Cytosine residues in mammalian DNA occur in five forms: cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). The ten-eleven translocation (Tet) dioxygenases convert 5mC to 5hmC, 5fC and 5caC in three consecutive, Fe(ii)- and α-ketoglutarate-dependent oxidation reactions. The Tet family of dioxygenases is widely distributed across the tree of life, including in the heterolobosean amoeboflagellate Naegleria gruberi. The genome of Naegleria encodes homologues of mammalian DNA methyltransferase and Tet proteins. Here we study biochemically and structurally one of the Naegleria Tet-like proteins (NgTet1), which shares significant sequence conservation (approximately 14% identity or 39% similarity) with mammalian Tet1. Like mammalian Tet proteins, NgTet1 acts on 5mC and generates 5hmC, 5fC and 5caC. The crystal structure of NgTet1 in complex with DNA containing a 5mCpG site revealed that NgTet1 uses a base-flipping mechanism to access 5mC. The DNA is contacted from the minor groove and bent towards the major groove. The flipped 5mC is positioned in the active-site pocket with planar stacking contacts, Watson–Crick polar hydrogen bonds and van der Waals interactions specific for 5mC. The sequence conservation between NgTet1 and mammalian Tet1, including residues involved in structural integrity and functional significance, suggests structural conservation across phyla.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Brian P. Anton; Lana Saleh; Jack S. Benner; Elisabeth A. Raleigh; Simon Kasif; Richard J. Roberts
Ribosomal protein S12 undergoes a unique posttranslational modification, methylthiolation of residue D88, in Escherichia coli and several other bacteria. Using mass spectrometry, we have identified the enzyme responsible for this modification in E. coli, the yliG gene product. This enzyme, which we propose be called RimO, is a radical-S-adenosylmethionine protein that bears strong sequence similarity to MiaB, which methylthiolates tRNA. We show that RimO and MiaB represent two of four subgroups of a larger, ancient family of likely methylthiotransferases, the other two of which are typified by Bacillus subtilis YqeV and Methanococcus jannaschii Mj0867, and we predict that RimO is unique among these subgroups in its modification of protein as opposed to tRNA. Despite this, RimO has not significantly diverged from the other three subgroups at the sequence level even within the C-terminal TRAM domain, which in the methyltransferase RumA is known to bind the RNA substrate and which we presume to be responsible for substrate binding and recognition in all four subgroups of methylthiotransferases. To our knowledge, RimO and MiaB represent the most extreme known case of resemblance between enzymes modifying protein and nucleic acid. The initial results presented here constitute a bioinformatics-driven prediction with preliminary experimental validation that should serve as the starting point for several interesting lines of further inquiry.
Biochemistry | 2009
Kyung-Hoon Lee; Lana Saleh; Brian P. Anton; Catherine L. Madinger; Jack S. Benner; David F. Iwig; Richard J. Roberts; Carsten Krebs; Squire J. Booker
RimO, encoded by the yliG gene in Escherichia coli, has been recently identified in vivo as the enzyme responsible for the attachment of a methylthio group on the beta-carbon of Asp88 of the small ribosomal protein S12 [Anton, B. P., Saleh, L., Benner, J. S., Raleigh, E. A., Kasif, S., and Roberts, R. J. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 1826-1831]. To date, it is the only enzyme known to catalyze methylthiolation of a protein substrate; the four other naturally occurring methylthio modifications have been observed on tRNA. All members of the methylthiotransferase (MTTase) family, to which RimO belongs, have been shown to contain the canonical CxxxCxxC motif in their primary structures that is typical of the radical S-adenosylmethionine (SAM) family of proteins. MiaB, the only characterized MTTase, and the enzyme experimentally shown to be responsible for methylthiolation of N(6)-isopentenyladenosine of tRNA in E. coli and Thermotoga maritima, has been demonstrated to harbor two distinct [4Fe-4S] clusters. Herein, we report in vitro biochemical and spectroscopic characterization of RimO. We show by analytical and spectroscopic methods that RimO, overproduced in E. coli in the presence of iron-sulfur cluster biosynthesis proteins from Azotobacter vinelandii, contains one [4Fe-4S](2+) cluster. Reconstitution of this form of RimO (RimO(rcn)) with (57)Fe and sodium sulfide results in a protein that contains two [4Fe-4S](2+) clusters, similar to MiaB. We also show by mass spectrometry that RimO(rcn) catalyzes the attachment of a methylthio group to a peptide substrate analogue that mimics the loop structure bearing aspartyl 88 of the S12 ribosomal protein from E. coli. Kinetic analysis of this reaction shows that the activity of RimO(rcn) in the presence of the substrate analogue does not support a complete turnover. We discuss the possible requirement for an assembled ribosome for fully active RimO in vitro. Our findings are consistent with those of other enzymes that catalyze sulfur insertion, such as biotin synthase, lipoyl synthase, and MiaB.
Proceedings of the National Academy of Sciences of the United States of America | 2015
June E. Pais; Nan Dai; Esta Tamanaha; Romualdas Vaisvila; Alexey Fomenkov; Jurate Bitinaite; Zhiyi Sun; Shengxi Guan; Ivan R. Corrêa; Christopher J. Noren; Xiaodong Cheng; Richard J. Roberts; Yu Zheng; Lana Saleh
Significance The discovery that 5-methylcytosine (5mC) can be iteratively oxidized by mammalian ten-eleven translocation (TET) proteins marks a breakthrough in the field of epigenetics. To better understand the evolutionary and functional linkage of TET family members, we characterized NgTET1 from the protist Naegleria gruberi, which bears homology to both TET and base J-binding protein, a thymidine hydroxylase in trypanosomes. We show that NgTET1 performs iterative oxidation of both 5mC and thymidine (T) (minor activity) on various DNA forms, and that these activities can be modulated by mutagenesis. We also present evidence for the effect of sequence context on both 5mC- and T-oxygenase activities. Finally, we show the utility of NgTET1 at direct methylome profiling using single-molecule, real-time sequencing. Modified DNA bases in mammalian genomes, such as 5-methylcytosine (5mC) and its oxidized forms, are implicated in important epigenetic regulation processes. In human or mouse, successive enzymatic conversion of 5mC to its oxidized forms is carried out by the ten-eleven translocation (TET) proteins. Previously we reported the structure of a TET-like 5mC oxygenase (NgTET1) from Naegleria gruberi, a single-celled protist evolutionarily distant from vertebrates. Here we show that NgTET1 is a 5-methylpyrimidine oxygenase, with activity on both 5mC (major activity) and thymidine (T) (minor activity) in all DNA forms tested, and provide unprecedented evidence for the formation of 5-formyluridine (5fU) and 5-carboxyuridine (5caU) in vitro. Mutagenesis studies reveal a delicate balance between choice of 5mC or T as the preferred substrate. Furthermore, our results suggest substrate preference by NgTET1 to 5mCpG and TpG dinucleotide sites in DNA. Intriguingly, NgTET1 displays higher T-oxidation activity in vitro than mammalian TET1, supporting a closer evolutionary relationship between NgTET1 and the base J-binding proteins from trypanosomes. Finally, we demonstrate that NgTET1 can be readily used as a tool in 5mC sequencing technologies such as single molecule, real-time sequencing to map 5mC in bacterial genomes at base resolution.
Journal of the American Chemical Society | 2016
Esta Tamanaha; Shengxi Guan; Katherine Marks; Lana Saleh
The ten-eleven translocation (TET) proteins catalyze oxidation of 5-methylcytosine ((5m)C) residues in nucleic acids to 5-hydroxymethylcytosine ((5hm)C), 5-formylcytosine ((5f)C), and 5-carboxycytosine ((5ca)C). These nucleotide bases have been implicated as intermediates on the path to active demethylation, but recent reports have suggested that they might have specific regulatory roles in their own right. In this study, we present kinetic evidence showing that the catalytic domains (CDs) of TET2 and TET1 from mouse and their homologue from Naegleria gruberi, the full-length protein NgTET1, are distributive in both chemical and physical senses, as they carry out successive oxidations of a single (5m)C and multiple (5m)C residues along a polymethylated DNA substrate. We present data showing that the enzyme neither retains (5hm)C/(5f)C intermediates of preceding oxidations nor slides along a DNA substrate (without releasing it) to process an adjacent (5m)C residue. These findings contradict a recent report by Crawford et al. ( J. Am. Chem. Soc. 2016 , 138 , 730 ) claiming that oxidation of (5m)C by CD of mouse TET2 is chemically processive (iterative). We further elaborate that this distributive mechanism is maintained for TETs in two evolutionarily distant homologues and posit that this mode of function allows the introduction of (5m)C forms as epigenetic markers along the DNA.
Biochemistry | 2011
Lana Saleh; Maurice W. Southworth; Nancy Considine; Colleen O’Neill; Jack S. Benner; J. Martin Bollinger; Francine B. Perler
We report the first detailed investigation of the kinetics of protein splicing by the Methanococcus jannaschii KlbA (Mja KlbA) intein. This intein has an N-terminal Ala in place of the nucleophilic Cys or Ser residue that normally initiates splicing but nevertheless splices efficiently in vivo [Southworth, M. W., Benner, J., and Perler, F. B. (2000) EMBO J.19, 5019–5026]. To date, the spontaneous nature of the cis splicing reaction has hindered its examination in vitro. For this reason, we constructed an Mja KlbA intein–mini-extein precursor using intein-mediated protein ligation and engineered a disulfide redox switch that permits initiation of the splicing reaction by the addition of a reducing agent such as dithiothreitol (DTT). A fluorescent tag at the C-terminus of the C-extein permits monitoring of the progress of the reaction. Kinetic analysis of the splicing reaction of the wild-type precursor (with no substitutions in known nucleophiles or assisting groups) at various DTT concentrations shows that formation of the branched intermediate from the precursor is reversible (forward rate constant of 1.5 × 10–3 s–1 and reverse rate constant of 1.7 × 10–5 s–1 at 42 °C), whereas the productive decay of this intermediate to form the ligated exteins is faster and occurs with a rate constant of 2.2 × 10–3 s–1. This finding conflicts with reports about standard inteins, for which Asn cyclization has been assigned as the rate-determining step of the splicing reaction. Despite being the slowest step of the reaction, branched intermediate formation in the Mja KlbA intein is efficient in comparison with those of other intein systems. Interestingly, it also appears that this intermediate is protected against thiolysis by DTT, in contrast to other inteins. Evidence is presented in support of a tight coupling between the N-terminal and C-terminal cleavage steps, despite the fact that the C-terminal single-cleavage reaction occurs in variant Mja KlbA inteins in the absence of N-terminal cleavage. We posit that the splicing events in the Mja KlbA system are tightly coordinated by a network of intra- and interdomain noncovalent interactions, rendering its function particularly sensitive to minor disruptions in the intein or extein environments.
Acta Crystallographica Section D-biological Crystallography | 2005
Monika Sommerhalter; Lana Saleh; J. Martin Bollinger; Amy C. Rosenzweig
A new crystal form of wild-type ribonucleotide reductase R2 from Escherichia coli was obtained. Crystals grow in space group P6(1)22 with one R2 monomer in the asymmetric unit. A twofold crystallographic symmetry axis generates the physiological dimeric form of R2. Co-crystallization with CoCl(2) or MnCl(2) results in full occupancy of the dinuclear metal site. The structure of the Mn(II)-loaded form was determined to 2.6 Angstroms resolution by molecular replacement. The crystallization conditions, backbone conformation, crystal-packing interactions and metal centers are compared with those of previously determined crystal forms.
Bioconjugate Chemistry | 2015
Jaymes Beech; Lana Saleh; Julie Frentzel; Heidi Figler; Ivan R. Corrêa; Brenda Baker; Caroline Ramspacher; Melissa A. Marshall; Siva Sai Krishna Dasa; Joel Linden; Christopher J. Noren; Kimberly A. Kelly
High-throughput screening of combinatorial chemical libraries is a powerful approach for identifying targeted molecules. The display of combinatorial peptide libraries on the surface of bacteriophages offers a rapid, economical way to screen billions of peptides for specific binding properties and has impacted fields ranging from cancer to vaccine development. As a modification to this approach, we have previously created a system that enables site-specific insertion of selenocysteine (Sec) residues into peptides displayed pentavalently on M13 phage as pIII coat protein fusions. In this study, we show the utility of selectively derivatizing these Sec residues through the primary amine of small molecules that target a G protein-coupled receptor, the adenosine A1 receptor, leaving the other coat proteins, including the major coat protein pVIII, unmodified. We further demonstrate that modified Sec-phage with multivalent bound agonist binds to cells and elicits downstream signaling with orders of magnitude greater potency than that of unconjugated agonist. Our results provide proof of concept of a system that can create hybrid small molecule-containing peptide libraries and open up new possibilities for phage-drug therapies.
Archive | 2011
Lana Saleh; Christopher J. Noren
The ability to chemically modify the surface of bacteriophage bypasses the functional limitations imposed by the standard biosynthetically incorporated amino acids that comprise the phage coat. Appended functionalities can include fluorescent or other reporter groups, inorganic materials, cytotoxic agents, and pharmacophores. Applications include incorporating the modification in the context of a displayed random peptide library prior to panning as a route to chimeric semisynthetic peptide ligands, use of phage as a template for construction of novel nanomaterials, direct mechanical manipulation of phage, use of phage particles as medical imaging reagents, and catalysis-based screening for novel enzyme activities.Site-specific modification of phage in the context of the forest of competing functional groups that make up the phage coat requires a uniquely reactive chemical group specifically placed in the coat protein. The so-called “21st amino acid” selenocysteine (Sec) is found in all three kingdoms of life and is co-translationally incorporated via a context-dependent opal suppression mechanism. The lower pKa of Sec (5.2 vs. 8.3 for cysteine) permits modification by direct nucleophilic substitution at low pH values, where other nucleophilic amino acids are essentially unreactive. Incorporation of Sec-insertion signals into the phage coat protein gene gIII results in quantitative site-specific incorporation of Sec, which can, in principle, be modified with any novel chemical group. The use of phage-displayed selenopeptides for chimeric library screening, enzyme evolution, and direct mechanical manipulation of phage will be discussed in this chapter.