Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Leonard Dauphinee is active.

Publication


Featured researches published by Leonard Dauphinee.


IEEE Journal of Solid-state Circuits | 2009

An Embedded 65 nm CMOS Baseband IQ 48 MHz–1 GHz Dual Tuner for DOCSIS 3.0

Francesco Gatta; Ray Gomez; Young Shin; Takayuki Hayashi; Hanli Zou; James Y. C. Chang; Leonard Dauphinee; Jianhong Xiao; Dave S.-H. Chang; Tai-Hong Chih; Massimo Brandolini; Dongsoo Koh; Bryan Juo-Jung Hung; Tao Wu; Mattia Introini; Giuseppe Cusmai; Ertan Zencir; Frank Singor; Hans Eberhart; Loke K. Tan; Bruce J. Currivan; Lin He; Peter Cangiane; Pieter Vorenkamp

An embedded CMOS digital dual tuner for DOCSIS 3.0 and set-top box applications is presented. The dual tuner down-converts a total of ten 6 MHz Annex B channels or eight 8 MHz Annex A channels, for a maximum data rate of 320 Mb/s in Annex B and 400 Mb/s in Annex A mode. The dual tuner exceeds all the stringent SCTE 40 specifications over the 48-1004 MHz bandwidth, without using any external components or SAW filters. Enabling technologies are a harmonic rejection front-end, a low-noise high-frequency resolution PLL, and digital image rejection. To our knowledge this is the first reported multichannel broadband tuner embedded in a DOCSIS 3.0 System on a chip implemented in 65 nm pure digital CMOS technology.


IEEE Communications Magazine | 2010

An embedded 65 nm CMOS baseband IQ 48 MHz-1 GHz dual tuner for DOCSIS 3.0

Francesco Gatta; Ray Gomez; Young Shin; Takayuki Hayashi; Hanli Zou; James Y. C. Chang; Leonard Dauphinee; Jianhong Xiao; Dave S.-H. Chang; Tai-Hong Chih; Massimo Brandolini; Dongsoo Koh; Bryan Juo-Jung Hung; Tao Wu; Mattia Introini; Giuseppe Cusmai; Ertan Zencir; Frank Singor; Hans Eberhart; Loke Tan; Bruce J. Currivan; Lin He; Peter Cangiane; Pieter Vorenkamp

An embedded CMOS digital dual tuner for DOCSIS 3.0 and set-top box applications is presented. The dual tuner down-converts a total of ten 6 MHz Annex B channels or eight 8 MHz Annex A channels, for a maximum data rate of 320 Mb/s in Annex B and 400 Mb/s in Annex A mode. The dual tuner exceeds all the stringent SCTE 40 specifications over the 48-1004 MHz bandwidth, without using any external components or SAW filters. Enabling technologies are a harmonic rejection front-end, a low-noise high-frequency resolution phase-locked loop (PLL) and digital image rejection. To our knowledge this is the first reported multi-channel Broadband Tuner embedded in a DOCSIS 3.0 System on a Chip implemented in a 65 nm pure digital CMOS technology.


custom integrated circuits conference | 2007

A Highly Linear Broadband Variable Gain LNA for TV Applications

Danilo Manstretta; Leonard Dauphinee

A broadband variable-gain low noise amplifier with triple output for TV tuners has been demonstrated in a 0.18 mum SiGe technology. The gain varies continuously from 27 dB to -28 dB and has better than 1 dB precision over a 1GHz bandwidth. At 27 dB gain the amplifier shows 6.5 dB NF, 82 dBmV OIP3 and 121 dBmV OIP2. OIP3 is above 73 dBmV down to -21 dB gain. With all three outputs enabled the circuit draws 170 mA from a 3.3V supply.


international solid-state circuits conference | 2009

An embedded 65nm CMOS low-IF 48MHz-to-1GHz dual tuner for DOCSIS 3.0

Francesco Gatta; Ray Gomez; Young Shin; Takayuki Hayashi; Hanli Zou; James Y. C. Chang; Leonard Dauphinee; Jianhong Xiao; Dave S.-H. Chang; Tai-Hong Chih; Massimo Brandolini; Dongsoo Koh; Bryan Juo-Jung Hung; Tao Wu; Mattia Introini; Giuseppe Cusmai; Loke Tan; Bruce J. Currivan; Lin He; Peter Cangiane; Pieter Vorenkamp

The increased competition to deliver broadband data to the home (including GPON and VDSL) is motivating cable providers to deliver data rates which far exceed what is presently available based on the DOCSIS 1.x and DOCSIS 2.0 standards. The DOCSIS 3.0 standard provides this bandwidth increase as well as additional flexibility, where higher data throughput can be obtained by bonding together multiple downstream (DS) channels. This standard calls for the ability to bond any 4 channels in a 64MHz contiguous RF bandwidth. Solutions that allow even more channel bonding and provide more flexibility in the allocated frequency spectrum are preferred. This paper reports an embedded dual-tuner architecture able to select two independent 32MHz frequency bands, allowing for a maximum of 10 demodulated 6MHz Annex B DS channels. In Fig. 6.6.1 the top level block diagram is shown: an external LNA amplifies the RF signal which drives an internal splitter, followed by the two low-IF tuners. Each tuner downconverts 5 DS channels to IF frequencies centered at 0MHz (CH 0), +6MHz (CH +1), +12MHz (CH +2), −6MHz (CH −1) and −12MHz (CH −2). Channels +1 and +2 lie at the images of channels −1 and −2 respectively. Any or all channels can be selected for demodulation by the SoC, up to a maximum of eight. Image rejection is enhanced digitally, taking advantage of the tuner integration into the SoC.


Archive | 2005

Variable-gain low noise amplifier for digital terrestrial applications

Lawrence M. Burns; Charles Alan Brooks; Leonard Dauphinee


Archive | 2004

Gain control methods and systems in an amplifier assembly

Leonard Dauphinee; Lawrence M. Burns


Archive | 2003

Process monitor for monitoring an integrated circuit chip

Lawrence M. Burns; Leonard Dauphinee; Ramon A. Gomez; James Y. C. Chang


Archive | 2004

Process monitor for monitoring and compensating circuit performance

Lawrence M. Burns; Leonard Dauphinee; Ramon A. Gomez; James Y. C. Chang


Archive | 2001

Extended range variable-gain amplifier

Lawrence M. Burns; Leonard Dauphinee


Archive | 2005

Method and system for implementing autonomous automatic gain control in a low noise broadband distribution amplifier

Adel Fanous; Leonard Dauphinee; Lawrence M. Burns; Donald McMullin

Collaboration


Dive into the Leonard Dauphinee's collaboration.

Researchain Logo
Decentralizing Knowledge