Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Young Shin is active.

Publication


Featured researches published by Young Shin.


international solid-state circuits conference | 1999

A single-chip universal digital satellite receiver with 480 MHz IF input

Alan Kwentus; Patrick Pai; Steve Jaffe; Ray Gomez; Sean Tsai; Tom W. Kwan; Hing-Tsun Hung; Young Shin; Vin Hue; Darwin Cheung; Raheel A. Khan; Christopher M. Ward; Mong-Kai Ku; Kenneth Choi; Jim Searle; Klaas Bult; Kelly Brian Cameron; Jason Demas; Charles Reames; Henry Samueli

A complete single-chip universal digital satellite receiver supports all current DBS system standards. The mixed signal device accepts a modulated data stream at up to 90 Mb/s and delivers a demodulated error-corrected output data stream. The IC features an analog front-end with 480 MHz IF downconversion and dual 8 bit A/D converters, an all-digital BPSK/QPSK/OQPSK receiver, and a DVB/DSS/DigiCipher-II compliant concatenated Viterbi/Reed-Solomon FEC decoder with on-chip deinterleaver RAM. All required clocks are generated on chip from a single reference crystal. The chip contains 1.2 M transistors in a 22 mm/sup 2/ die in single-poly 0.35 /spl mu/m CMOS with four layers of metal.


IEEE Journal of Solid-state Circuits | 2009

An Embedded 65 nm CMOS Baseband IQ 48 MHz–1 GHz Dual Tuner for DOCSIS 3.0

Francesco Gatta; Ray Gomez; Young Shin; Takayuki Hayashi; Hanli Zou; James Y. C. Chang; Leonard Dauphinee; Jianhong Xiao; Dave S.-H. Chang; Tai-Hong Chih; Massimo Brandolini; Dongsoo Koh; Bryan Juo-Jung Hung; Tao Wu; Mattia Introini; Giuseppe Cusmai; Ertan Zencir; Frank Singor; Hans Eberhart; Loke K. Tan; Bruce J. Currivan; Lin He; Peter Cangiane; Pieter Vorenkamp

An embedded CMOS digital dual tuner for DOCSIS 3.0 and set-top box applications is presented. The dual tuner down-converts a total of ten 6 MHz Annex B channels or eight 8 MHz Annex A channels, for a maximum data rate of 320 Mb/s in Annex B and 400 Mb/s in Annex A mode. The dual tuner exceeds all the stringent SCTE 40 specifications over the 48-1004 MHz bandwidth, without using any external components or SAW filters. Enabling technologies are a harmonic rejection front-end, a low-noise high-frequency resolution PLL, and digital image rejection. To our knowledge this is the first reported multichannel broadband tuner embedded in a DOCSIS 3.0 System on a chip implemented in 65 nm pure digital CMOS technology.


IEEE Communications Magazine | 2010

An embedded 65 nm CMOS baseband IQ 48 MHz-1 GHz dual tuner for DOCSIS 3.0

Francesco Gatta; Ray Gomez; Young Shin; Takayuki Hayashi; Hanli Zou; James Y. C. Chang; Leonard Dauphinee; Jianhong Xiao; Dave S.-H. Chang; Tai-Hong Chih; Massimo Brandolini; Dongsoo Koh; Bryan Juo-Jung Hung; Tao Wu; Mattia Introini; Giuseppe Cusmai; Ertan Zencir; Frank Singor; Hans Eberhart; Loke Tan; Bruce J. Currivan; Lin He; Peter Cangiane; Pieter Vorenkamp

An embedded CMOS digital dual tuner for DOCSIS 3.0 and set-top box applications is presented. The dual tuner down-converts a total of ten 6 MHz Annex B channels or eight 8 MHz Annex A channels, for a maximum data rate of 320 Mb/s in Annex B and 400 Mb/s in Annex A mode. The dual tuner exceeds all the stringent SCTE 40 specifications over the 48-1004 MHz bandwidth, without using any external components or SAW filters. Enabling technologies are a harmonic rejection front-end, a low-noise high-frequency resolution phase-locked loop (PLL) and digital image rejection. To our knowledge this is the first reported multi-channel Broadband Tuner embedded in a DOCSIS 3.0 System on a Chip implemented in a 65 nm pure digital CMOS technology.


international solid-state circuits conference | 2015

26.6 A 5GS/S 150mW 10b SHA-less pipelined/SAR hybrid ADC in 28nm CMOS

Massimo Brandolini; Young Shin; Karthik Raviprakash; Tao Wang; Rong Wu; Hemasundar Mohan Geddada; Yen-Jen Ko; Yen Ding; Chun-Sheng Huang; Wei-Ta Shin; Ming-Hung Hsieh; Wei-Te Chou; Tianwei Li; Ayaskant Shrivastava; Yi-Chun Chen; Juo-Jung Hung; Giuseppe Cusmai; Jiangfeng Wu; Mo M. Zhang; Greg Unruh; Ardie Venes; Hung Sen Huang; Chun-Ying Chen

The recent emergence of direct sampling in residential broadband satellite and cable receivers has spurred the need for low-power, high-speed (~5GS/s), mid-resolution (~10b) A/D converters. Recently, time-interleaved (TI) SARs have been a popular choice for low-power, medium-speed, mid-resolution ADCs [1-3]. As the conversion rate and resolution requirements increase, TI-SARs become less attractive in terms of power efficiency and complexity compared to TI-pipelined ADCs [4], where the critical SNR, THD, and TI matching are only required in the MDACs resolving the MSBs. In this paper we report a hybrid of TI-pipelined MDAC and TI-SAR, in which the former resolves the 2 MSB bits and the latter resolves the 8 lower bits. This hybrid architecture combines the advantages from each ADC type to achieve better power at 5GS/s. The front-end is implemented by time-interleaving two 2.5b MDAC slices, easing the timing-matching requirement and complexity. The MDAC stage also eases the timing-matching requirement among the TI-SARs by presenting an amplified-and-held signal to each SAR input. This allows taking advantage of a low-resolution SARs simplicity and low power, for the last 8b. This work also proposes a SHA-less front-end to further minimize the ADC power. Two simple calibration techniques are introduced on-chip to enable the topology: (a) an over-range calibration (ORcal) loop to correct the sampling-time error between MDAC and sub-ADC in the SHA-less front-end, and (b) SAR reference calibration to align the SARs full-scale to the MDACs. Figure 26.6.1 shows the timing and functional block diagram of the 5GS/s hybrid SHA-less ADC. The RF buffer directly drives two TI-slices, each comprising a 2.5GS/S MDAC stage to resolve the 2.5 MSB bits, followed by 4-way interleaved 625MS/S SARs to resolve the lower 8b, for a combined 10b resolution (1b overlap), at 5GS/s.


international solid-state circuits conference | 2016

27.6 A 4GS/s 13b pipelined ADC with capacitor and amplifier sharing in 16nm CMOS

Jiangfeng Wu; Acer Wei-Te Chou; Tianwei Li; Rong Wu; Tao Wang; Giuseppe Cusmai; Sha-Ting Lin; Cheng-Hsun Yang; Gregory Unruh; Sunny Raj Dommaraju; Mo M. Zhang; Po Tang Yang; Wei-Ting Lin; Xi Chen; Dongsoo Koh; Qingqi Dou; H. Mohan Geddada; Juo-Jung Hung; Massimo Brandolini; Young Shin; Hung-Sen Huang; Chun-Ying Chen; Ardie Venes

In recent years, we have seen the emergence of multi-GS/s medium-to-high-resolution ADCs. Presently, SAR ADCs dominate low-speed applications and time-interleaved SARs are becoming increasingly popular for high-speed ADCs [1,2]. However the SAR architecture faces two key problems in simultaneously achieving multi-GS/s sample rates and high resolution: (1) the fundamental trade-off of comparator noise and speed is limiting the speed of single-channel SARs, and (2) highly time-interleaved ADCs introduce complex lane-to-lane mismatches that are difficult to calibrate with high accuracy. Therefore, pipelined [3] and pipelined-SAR [4] remain the most common architectural choices for high-speed high-resolution ADCs. In this work, a pipelined ADC achieves 4GS/s sample rate, using a 4-step capacitor and amplifier-sharing front-end MDAC architecture with 4-way sampling to reduce noise, distortion and power, while overcoming common issues for SHA-less ADCs.


IEEE Journal of Solid-state Circuits | 2015

A 5 GS/s 150 mW 10 b SHA-Less Pipelined/SAR Hybrid ADC for Direct-Sampling Systems in 28 nm CMOS

Massimo Brandolini; Young Shin; Karthik Raviprakash; Tao Wang; Rong Wu; Hemasundar Mohan Geddada; Yen-Jen Ko; Yen Ding; Chun-Sheng Huang; Wei-Ta Shih; Ming-Hung Hsieh; Acer Wei-Te Chou; Tianwei Li; Ayaskant Shrivastava; Dominique Yi-Chun Chen; Bryan Juo-Jung Hung; Giuseppe Cusmai; Jiangfeng Wu; Mo Maggie Zhang; Yuan Yao; Greg Unruh; Ardie Venes; Hung Sen Huang; Chun-Ying Chen

This paper presents a 28 nm CMOS 10 b SHA-less pipelined/SAR hybrid ADC, designed to enable a direct-sampling receiver system. To achieve low power at 5 GS/s, the ADC combines pipelined and SAR quantizers, powered at 1.8 V and 1 V, respectively. A 2.5 b 2-way time-interleaved 2.5 GS/s multiplying digital-to-analog converter (MDAC) is followed by an 8 b 8-way time-interleaved 625 MHz successive-approximation register (SAR). This architecture combines the benefits of both ADC topologies and allows significant power and complexity reduction. The high-speed 2.5 b MDAC front-end simplifies the complexity of time-interleaving (TI) and provides gain for attenuating the 8 b SAR non-idealities, when referred to the ADC input, relaxing its specifications and design. To further reduce power, the 2.5 b MDAC front-end is SHA-less, and an over-range calibration loop that allows operation at multi-GHz input is introduced. A calibration technique is also proposed to align the MDAC and SAR references, whose misalignment would otherwise produce integral non-linearity (INL) degradation. The ADC achieves -61.8 dB THD, 57.1 dB SNR for a 500 MHz input, while for a 2.35 GHz input it achieves -54.7 dB THD, 46.8 dB SNR (55.8 dB SNR excluding the integrated PLL contribution). The time-interleaving spur is 70 dBc. The ADC consumes 150 mW and occupies less than 0.5 mm2.


IEEE Journal of Solid-state Circuits | 2016

A 2.7 mW/Channel 48–1000 MHz Direct Sampling Full-Band Cable Receiver

Jiangfeng Wu; Giuseppe Cusmai; Acer Wei-Te Chou; Tao Wang; Bo Shen; Vijayaramalingam Periasamy; Ming-Hung Hsieh; Chun-Ying Chen; Lin He; Loke Kun Tan; Aravind Padyana; Vincent Cheng-Hsun Yang; Gregory Unruh; Jackie Koon Lun Wong; Bryan Juo-Jung Hung; Massimo Brandolini; Maco Sha-Ting Lin; Xi Chen; Yen Ding; Yen-Jen Ko; Young Shin; Ada Hing T. Hung; Binning Chen; Cynthia Dang; Deepak Lakshminarasimhan; Hong Liu; Jerry Lin; Kowen Lai; Larry Wassermann; Ayaskant Shrivastava

A direct sampling full-band capture (FBC) receiver for cable and digital TV applications is presented. It consists of a 0.18 μm BiCMOS low-noise amplifier (LNA) and a 28 nm CMOS direct RF sampling receiver based on a 2.7 GS/s analog-to-digital converter (ADC) embedded in a system-on-chip (SoC). Digital signal processing (DSP) plays critical roles to assist analog circuits in providing functionalities and enhancing performances, including digital automatic gain control (AGC), digital phase-locked loop (PLL), and digital ADC compensation. The receiver is capable of receiving 158 256 QAM channels from 48 to 1000 MHz simultaneously, achieving up to 10 Gb/s data throughput for data and video while exceeding Data over cable service interface specification (DOCSIS) and Society of Cable Telecommunications Engineers (SCTE) requirements. The CMOS receiver occupies 1 mm2 area while consuming 300 mW. The LNA consumes 130 mW and occupies 3 mm2 area. The total power dissipation from the receiver is 2.7 mW per 6 MHz channel when capturing the entire cable spectrum.


international solid-state circuits conference | 2009

An embedded 65nm CMOS low-IF 48MHz-to-1GHz dual tuner for DOCSIS 3.0

Francesco Gatta; Ray Gomez; Young Shin; Takayuki Hayashi; Hanli Zou; James Y. C. Chang; Leonard Dauphinee; Jianhong Xiao; Dave S.-H. Chang; Tai-Hong Chih; Massimo Brandolini; Dongsoo Koh; Bryan Juo-Jung Hung; Tao Wu; Mattia Introini; Giuseppe Cusmai; Loke Tan; Bruce J. Currivan; Lin He; Peter Cangiane; Pieter Vorenkamp

The increased competition to deliver broadband data to the home (including GPON and VDSL) is motivating cable providers to deliver data rates which far exceed what is presently available based on the DOCSIS 1.x and DOCSIS 2.0 standards. The DOCSIS 3.0 standard provides this bandwidth increase as well as additional flexibility, where higher data throughput can be obtained by bonding together multiple downstream (DS) channels. This standard calls for the ability to bond any 4 channels in a 64MHz contiguous RF bandwidth. Solutions that allow even more channel bonding and provide more flexibility in the allocated frequency spectrum are preferred. This paper reports an embedded dual-tuner architecture able to select two independent 32MHz frequency bands, allowing for a maximum of 10 demodulated 6MHz Annex B DS channels. In Fig. 6.6.1 the top level block diagram is shown: an external LNA amplifies the RF signal which drives an internal splitter, followed by the two low-IF tuners. Each tuner downconverts 5 DS channels to IF frequencies centered at 0MHz (CH 0), +6MHz (CH +1), +12MHz (CH +2), −6MHz (CH −1) and −12MHz (CH −2). Channels +1 and +2 lie at the images of channels −1 and −2 respectively. Any or all channels can be selected for demodulation by the SoC, up to a maximum of eight. Image rejection is enhanced digitally, taking advantage of the tuner integration into the SoC.


IEEE Transactions on Microwave Theory and Techniques | 2017

A 28 nm, 475 mW, and 0.4–1.7 GHz Embedded Transceiver Front-End Enabling High-Speed Data Streaming Within Home Cable Networks

Silvian Spiridon; Dongsoo Koh; Jianhong Xiao; Massimo Brandolini; Bo Shen; C.-M. Hsiao; Hung Sen Huang; Davide Guermandi; Stefano Bozzola; Han Yan; Mattia Introini; Lakshminarasimhan Krishnan; K. Raviprakash; Young Shin; Ramon Gomez; James Y. C. Chang

A 28 nm CMOS software-defined transceiver (SDTRX) enabling high-speed data (HSD) streaming, including ultra HD TV, within home cable networks is presented. By making efficient use of available cable bandwidth, the SDTRX dynamically handles up to 1024-QAM OFDM-modulated HSD streams. This paper addresses SDTRX system-level design methodology as the key driver in enabling performance optimization for achieving a wide frequency range of operation at lowest power and area consumption. By employing an optimized architecture constructed on available state-of-the-art 28 nm functional building blocks, the monolithic SDTRX consists of a mixer-based harmonic rejection RX with a digital-to-analog converter-based TX and a smart phase-locked loop system. It operates over 0.4–1.7 GHz frequency range while consuming less than 475 mW in half-duplex mode. Moreover, by developing a simple transmitter (TX) to receiver (RX) loopback circuit, the system is enabled to efficiently calibrate TX output power and to remove the need for a dedicated external pin. This low-cost SDTRX is embedded in various 28 nm CMOS multimedia system-on-chip and is, to the authors’ knowledge, the first reported transceiver front-end to enable true HSD streaming within home cable networks.


symposium on vlsi circuits | 2015

A 2.7mW/Channel 48-to-1000MHz Direct Sampling Full-Band Cable Receiver

Jiangfeng Wu; Giuseppe Cusmai; Acer Wei-Te Chou; Tao Wang; Bo Shen; Vijayaramalingam Periasamy; Ming-Hung Hsieh; Chun-Ying Chen; Lin He; Loke Tan; Aravind Padyana; Cheng-Hsun Yang; Gregory Unruh; Jackie Koon Lun Wong; Juo-Jung Hung; Massimo Brandolini; Sha-Ting Lin; Xi Chen; Yen Ding; Yen-Jen Ko; Young Shin; Ada Hing T. Hung; Binning Chen; Cynthia Dang; Deepak Lakshminarasimhan; Iris Hong Liu; Jerry Lin; Kowen Lai; Larry Wassermann; Ayaskant Shrivastava

We present a direct sampling full-band capture receiver for cable and digital TV applications. It consists of a 28nm CMOS ADC-based direct sampling receiver and a 0.18um BiCMOS LNA. It is capable of receiving 158 channels from 48MHz to 1000MHz simultaneously, achieving up to 10Gb/s data throughput, while exceeding DOCSIS requirements. The CMOS receiver occupies 1mm2 area while consuming 300mW. The LNA consumes 130mW. The total power dissipation from the receiver is 2.7mW per 6MHz channel.

Collaboration


Dive into the Young Shin's collaboration.

Researchain Logo
Decentralizing Knowledge