Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lourdes Peña-Castillo is active.

Publication


Featured researches published by Lourdes Peña-Castillo.


Cell | 2008

Variation in homeodomain DNA-binding revealed by high-resolution analysis of sequence preferences

Michael F. Berger; Gwenael Badis; Andrew R. Gehrke; Shaheynoor Talukder; Anthony A. Philippakis; Lourdes Peña-Castillo; Trevis M. Alleyne; Sanie Mnaimneh; Olga Botvinnik; Esther T. Chan; Faiqua Khalid; Wen Zhang; Daniel E. Newburger; Savina A. Jaeger; Quaid Morris; Martha L. Bulyk; Timothy R. Hughes

Most homeodomains are unique within a genome, yet many are highly conserved across vast evolutionary distances, implying strong selection on their precise DNA-binding specificities. We determined the binding preferences of the majority (168) of mouse homeodomains to all possible 8-base sequences, revealing rich and complex patterns of sequence specificity and showing that there are at least 65 distinct homeodomain DNA-binding activities. We developed a computational system that successfully predicts binding sites for homeodomain proteins as distant from mouse as Drosophila and C. elegans, and we infer full 8-mer binding profiles for the majority of known animal homeodomains. Our results provide an unprecedented level of resolution in the analysis of this simple domain structure and suggest that variation in sequence recognition may be a factor in its functional diversity and evolutionary success.


Molecular Cell | 2008

A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters

Gwenael Badis; Esther T. Chan; Harm van Bakel; Lourdes Peña-Castillo; Desiree Tillo; Kyle Tsui; Clayton D. Carlson; Andrea J. Gossett; Michael J. Hasinoff; Christopher L. Warren; Marinella Gebbia; Shaheynoor Talukder; Ally Yang; Sanie Mnaimneh; Dimitri Terterov; David Coburn; Ai Li Yeo; Zhen Xuan Yeo; Neil D. Clarke; Jason D. Lieb; Aseem Z. Ansari; Corey Nislow; Timothy R. Hughes

The sequence specificity of DNA-binding proteins is the primary mechanism by which the cell recognizes genomic features. Here, we describe systematic determination of yeast transcription factor DNA-binding specificities. We obtained binding specificities for 112 DNA-binding proteins representing 19 distinct structural classes. One-third of the binding specificities have not been previously reported. Several binding sequences have striking genomic distributions relative to transcription start sites, supporting their biological relevance and suggesting a role in promoter architecture. Among these are Rsc3 binding sequences, containing the core CGCG, which are found preferentially approximately 100 bp upstream of transcription start sites. Mutation of RSC3 results in a dramatic increase in nucleosome occupancy in hundreds of proximal promoters containing a Rsc3 binding element, but has little impact on promoters lacking Rsc3 binding sequences, indicating that Rsc3 plays a broad role in targeting nucleosome exclusion at yeast promoters.


Genome Biology | 2008

A critical assessment of Mus musculus gene function prediction using integrated genomic evidence

Lourdes Peña-Castillo; Murat Tasan; Chad L. Myers; Hyunju Lee; Trupti Joshi; Chao Zhang; Yuanfang Guan; Michele Leone; Andrea Pagnani; Wan-Kyu Kim; Chase Krumpelman; Weidong Tian; Guillaume Obozinski; Yanjun Qi; Guan Ning Lin; Gabriel F. Berriz; Francis D. Gibbons; Gert R. G. Lanckriet; Jian-Ge Qiu; Charles E. Grant; Zafer Barutcuoglu; David P. Hill; David Warde-Farley; Chris Grouios; Debajyoti Ray; Judith A. Blake; Minghua Deng; Michael I. Jordan; William Stafford Noble; Quaid Morris

Background:Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated.Results:In this study, a standardized collection of mouse functional genomic data was assembled; nine bioinformatics teams used this data set to independently train classifiers and generate predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the best performing submissions were combined in a single set of predictions. We identified strengths and weaknesses of current functional genomic data sets and compared the performance of function prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000 currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41% precision, with 26% of GO terms achieving a precision better than 90%.Conclusion:We performed a systematic evaluation of diverse, independently developed computational approaches for predicting gene function from heterogeneous data sources in mammals. The results show that currently available data for mammals allows predictions with both breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse genes that remain uncharacterized.


Genetics | 2007

Why Are There Still Over 1000 Uncharacterized Yeast Genes

Lourdes Peña-Castillo; Timothy R. Hughes

The yeast genetics community has embraced genomic biology, and there is a general understanding that obtaining a full encyclopedia of functions of the ∼6000 genes is a worthwhile goal. The yeast literature comprises over 40,000 research papers, and the number of yeast researchers exceeds the number of genes. There are mutated and tagged alleles for virtually every gene, and hundreds of high-throughput data sets and computational analyses have been described. Why, then, are there >1000 genes still listed as uncharacterized on the Saccharomyces Genome Database, 10 years after sequencing the genome of this powerful model organism? Examination of the currently uncharacterized gene set suggests that while some are small or newly discovered, the vast majority were evident from the initial genome sequence. Most are present in multiple genomics data sets, which may provide clues to function. In addition, roughly half contain recognizable protein domains, and many of these suggest specific metabolic activities. Notably, the uncharacterized gene set is highly enriched for genes whose only homologs are in other fungi. Achieving a full catalog of yeast gene functions may require a greater focus on the life of yeast outside the laboratory.


Molecular Cell | 2009

Two-Color Cell Array Screen Reveals Interdependent Roles for Histone Chaperones and a Chromatin Boundary Regulator in Histone Gene Repression

Jeffrey Fillingham; Pinay Kainth; Jean-Philippe Lambert; Harm van Bakel; Kyle Tsui; Lourdes Peña-Castillo; Corey Nislow; Daniel Figeys; Timothy R. Hughes; Jack Greenblatt; Brenda Andrews

We describe a fluorescent reporter system that exploits the functional genomic tools available in budding yeast to systematically assess consequences of genetic perturbations on gene expression. We used our Reporter-Synthetic Genetic Array (R-SGA) method to screen for regulators of core histone gene expression. We discovered that the histone chaperone Rtt106 functions in a pathway with two other chaperones, Asf1 and the HIR complex, to create a repressive chromatin structure at core histone promoters. We found that activation of histone (HTA1) gene expression involves both relief of Rtt106-mediated repression by the activity of the histone acetyltransferase Rtt109 and restriction of Rtt106 to the promoter region by the bromodomain-containing protein Yta7. We propose that the maintenance of Asf1/HIR/Rtt106-mediated repressive chromatin domains is the primary mechanism of cell-cycle regulation of histone promoters. Our data suggest that this pathway may represent a chromatin regulatory mechanism that is broadly used across the genome.


PLOS Pathogens | 2008

Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model.

Fiona E. Lovegrove; Sina A. Gharib; Lourdes Peña-Castillo; Samir N. Patel; John T. Ruzinski; Timothy R. Hughes; W. Conrad Liles; Kevin C. Kain

Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36 −/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality.


Methods | 2009

Comprehensive genetic analysis of transcription factor pathways using a dual reporter gene system in budding yeast.

Pinay Kainth; Holly E. Sassi; Lourdes Peña-Castillo; Gordon Chua; Timothy R. Hughes; Brenda Andrews

The development and application of genomic reagents and techniques has fuelled progress in our understanding of regulatory networks that control gene expression in eukaryotic cells. However, a full description of the network of regulator-gene interactions that determine global gene expression programs remains elusive and will require systematic genetic as well as biochemical assays. Here, we describe a functional genomics approach that combines reporter technology, genome-wide array-based reagents and high-throughput imaging to discover new regulators controlling gene expression patterns in Saccharomyces cerevisiae. Our strategy utilizes the synthetic genetic array (SGA) method to systematically introduce promoter-GFP (green fluorescent protein) reporter constructs along with a control promoter-RFP (red fluorescent protein) gene into the array of approximately 4500 viable yeast deletion mutants. Fluorescence intensities from each reporter are assayed from individual colonies arrayed on solid agar plates using a scanning fluorimager and the ratio of GFP to RFP intensity reveals deletion mutants that cause differential GFP expression. We are exploiting this screening approach to construct a detailed map describing the interplay of regulators controlling the eukaryotic cell cycle. The method is extensible to any transcription factor or signalling pathway for which an appropriate reporter gene can be devised.


Bioinformatics | 2009

Predicting the binding preference of transcription factors to individual DNA k-mers

Trevis M. Alleyne; Lourdes Peña-Castillo; Gwenael Badis; Shaheynoor Talukder; Michael F. Berger; Andrew R. Gehrke; Anthony A. Philippakis; Martha L. Bulyk; Quaid D. Morris; Timothy R. Hughes

Motivation: Recognition of specific DNA sequences is a central mechanism by which transcription factors (TFs) control gene expression. Many TF-binding preferences, however, are unknown or poorly characterized, in part due to the difficulty associated with determining their specificity experimentally, and an incomplete understanding of the mechanisms governing sequence specificity. New techniques that estimate the affinity of TFs to all possible k-mers provide a new opportunity to study DNA–protein interaction mechanisms, and may facilitate inference of binding preferences for members of a given TF family when such information is available for other family members. Results: We employed a new dataset consisting of the relative preferences of mouse homeodomains for all eight-base DNA sequences in order to ask how well we can predict the binding profiles of homeodomains when only their protein sequences are given. We evaluated a panel of standard statistical inference techniques, as well as variations of the protein features considered. Nearest neighbour among functionally important residues emerged among the most effective methods. Our results underscore the complexity of TF–DNA recognition, and suggest a rational approach for future analyses of TF families. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Annals of the Rheumatic Diseases | 2016

Private rare deletions in SEC16A and MAMDC4 may represent novel pathogenic variants in familial axial spondyloarthritis.

Darren D. O'Rielly; Mohammed Uddin; D. Codner; Michael Hayley; Jiayi Zhou; Lourdes Peña-Castillo; Ahmed Mostafa; S.M. Mahmudul Hasan; William Liu; Nigil Haroon; Robert D. Inman; Proton Rahman

Objective Axial spondyloarthritis (AxSpA) represents a group of inflammatory axial diseases that share common clinical and histopathological manifestations. Ankylosing spondylitis (AS) is the best characterised subset of AxSpA, and its genetic basis has been extensively investigated. Given that genome-wide association studies account for only 25% of AS heritability, the objective of this study was to discover rare, highly penetrant genetic variants in AxSpA pathogenesis using a well-characterised, multigenerational family. Methods HLA-B*27 genotyping and exome sequencing was performed on DNA collected from available family members. Variant frequency was assessed by mining publically available datasets and using fragment analysis of unrelated AxSpA cases and unaffected controls. Gene expression was performed by qPCR, and protein expression was assessed by western blot analysis and immunofluorescence microscopy using patient-derived B-cell lines. Circular dichroism spectroscopy was performed to assess the impact of discovered variants on secondary structure. Results This is the first report identifying two rare private familial variants in a multigenerational AxSpA family, an in-frame SEC16A deletion and an out-of-frame MAMDC4 deletion. Evidence suggests the causative mechanism for SEC16A appears to be a conformational change induced by deletion of three highly conserved amino acids from the intrinsically disordered Sec16A N-terminus and RNA-mediated decay for MAMDC4. Conclusions The results suggest that it is the presence of rare syntenic SEC16A and MAMDC4 deletions that increases susceptibility to AxSpA in family members who carry the HLA-B*27 allele.


Scientific Reports | 2017

CD24 induces changes to the surface receptors of B cell microvesicles with variable effects on their RNA and protein cargo

D. Craig Ayre; Ian C. Chute; Andrew P. Joy; David A. Barnett; Andrew M. Hogan; Marc P. Grüll; Lourdes Peña-Castillo; Andrew S. Lang; Stephen M. Lewis; Sherri L. Christian

The CD24 cell surface receptor promotes apoptosis in developing B cells, and we recently found that it induces B cells to release plasma membrane-derived, CD24-bearing microvesicles (MVs). Here we have performed a systematic characterization of B cell MVs released from WEHI-231 B lymphoma cells in response to CD24 stimulation. We found that B cells constitutively release MVs of approximately 120 nm, and that CD24 induces an increase in phosphatidylserine-positive MV release. RNA cargo is predominantly comprised of 5S rRNA, regardless of stimulation; however, CD24 causes a decrease in the incorporation of protein coding transcripts. The MV proteome is enriched with mitochondrial and metabolism-related proteins after CD24 stimulation; however, these changes were variable and could not be fully validated by Western blotting. CD24-bearing MVs carry Siglec-2, CD63, IgM, and, unexpectedly, Ter119, but not Siglec-G or MHC-II despite their presence on the cell surface. CD24 stimulation also induces changes in CD63 and IgM expression on MVs that is not mirrored by the changes in cell surface expression. Overall, the composition of these MVs suggests that they may be involved in releasing mitochondrial components in response to pro-apoptotic stress with changes to the surface receptors potentially altering the cell type(s) that interact with the MVs.

Collaboration


Dive into the Lourdes Peña-Castillo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oscar Meruvia-Pastor

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Andrew S. Lang

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kevin C. Kain

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amit P. Desai

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Corey Nislow

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge