Masaki Nakano
Komatsu Limited
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Masaki Nakano.
Proceedings of SPIE | 2007
Akira Endo; Hideo Hoshino; Takashi Suganuma; Masato Moriya; Tatsuya Ariga; Yoshifumi Ueno; Masaki Nakano; Takeshi Asayama; Tamotsu Abe; Hiroshi Komori; Georg Soumagne; Hakaru Mizoguchi; Akira Sumitani; Koichi Toyoda
We develop a laser produced plasma light source for high volume manufacturing (HVM) EUV lithography. The light source is based on a short pulse, high power, high repetition rate CO2 master oscillator power amplifier (MOPA) laser system and a Tin droplet target. A maximum conversion efficiency of 4.5% was measured for a CO2 laser driven Sn plasma having a narrow spectrum at 13.5 nm. In addition, low debris generation was observed. The CO2 MOPA laser system is based on commercial high power cw CO2 lasers. We achieve an average laser power of 3 kW at 100 kHz with a single laser beam that has very good beam quality. In a first step, a 50-W light source is developing. Based on a 10-kW CO2 laser this light source is scalable to more than 100 W EUV in-band power.
Emerging Lithographic Technologies IX | 2005
Georg Soumagne; Tamotsu Abe; Takashi Suganuma; Yousuke Imai; Hiroshi Someya; Hideo Hoshino; Masaki Nakano; Hiroshi Komori; Yuichi Takabayashi; Tatsuya Ariga; Yoshifumi Ueno; Yasunori Wada; Akira Endo; Koichi Toyoda
The status of the next generation lithography laser produced plasma light source development at EUVA is presented. The light source is based on a Xenon jet target and a Nd:YAG driver laser. The laser, having a master oscillator power amplifier (MOPA) configuration, operates at 10 kHz repetition rate and generates an average output power of 1.5 kW. The fwhm pulsewidth is 6 ns. The EUV system currently delivers an average EUV source power of 9.1 W (2% bandwidth, 2π sr) with a conversion efficiency of 0.6 %. Based on the development it is concluded that solid-state Nd:YAG laser technology can be cost efficiently used to produce 10 W level EUV light sources. In order to generate an average power of 115 W for a future extreme ultraviolet (EUV) light source, however, the cost of a Nd:YAG based LPP source will be too high. Therefore RF-CO2 laser technology will be used. The designed CO2 driver laser system has a MOPA configuration. The oscillator has ns-order pulsewidth and the laser system operates at a repetition rate of 100 kHz. Due to its inert cleanliness Xenon droplets will be the target material.
Proceedings of SPIE | 2009
Akira Endo; Hiroshi Komori; Yoshifumi Ueno; Krzysztof Nowak; Yabu Takayuki; Yanagida Tatsuya; Takashi Suganuma; Takeshi Asayama; Hiroshi Someya; Hideo Hoshino; Masaki Nakano; Masato Moriya; Toshihiro Nishisaka; Tamotsu Abe; Akira Sumitani; Hitoshi Nagano; Youichi Sasaki; Shinji Nagai; Yukio Watanabe; Georg Soumagne; Takanobu Ishihara; Osamu Wakabayashi; Kouji Kakizaki; Hakaru Mizoguchi
We are developing a laser produced plasma light source for high volume manufacturing (HVM) EUV lithography. The light source is based on a high power, high repetition rate CO2 laser system, a tin droplet target and a magnetic plasma guiding for collector mirror protection. This approach enables cost-effective high-conversion efficiency and EUV power scaling. The laser system is a master oscillator power amplifier (MOPA) configuration. We have achieved a maximum average laser output power of more than 10 kW at 100 kHz and 20 ns pulse by a single laser beam with good beam quality. EUV in-band power and out-of-band characteristics are measuring with high power CO2 laser and Sn droplet target configuration. This light source is scalable to more than 200 W EUV in-band power based on a 20-kW CO2 laser. Collector mirror life can be extended by using droplet target and magnetic plasma guiding. Effectiveness of the magnetic plasma guiding is examined by monitoring the motion of fast Sn ion in a large vacuum chamber. The ion flux from a Sn plasma was confined along the magnetic axis with a maximum magnetic flux density of 2 T.
Proceedings of SPIE | 2008
Akira Endo; Hideo Hoshino; Takashi Suganuma; Krzysztof Nowak; Tatsuya Yanagida; Takayuki Yabu; Takeshi Asayama; Yoshifumi Ueno; Masato Moriya; Masaki Nakano; Hiroshi Someya; Toshihiro Nishisaka; Tamotsu Abe; Georg Soumagne; Hiroshi Komori; Hakaru Mizoguchi; Akira Sumitani; Koichi Toyoda
We are developing a laser produced plasma light source for high volume manufacturing (HVM) EUV lithography. The light source is based on a high power, high repetition rate CO2 laser system, a tin target and a magnetic ion guiding for tin treatment. The laser system is a master oscillator power amplifier (MOPA) configuration. We have achieved an average laser output power of 10 kW at 100 kHz by a single laser beam with good beam quality. EUV in-band power equivalent to 60 W at intermediate focus was produced by irradiating a tin rotating plate with 6 kW laser power. This light source is scalable to more than 200 W EUV in-band power based on a 20-kW CO2 laser. Collector mirror life can be extended by using droplet target and magnetic ion guiding. Effectiveness of the magnetic ion guiding is examined by monitoring the motion of fast Sn ion in a large vacuum chamber with a maximum magnetic flux density of 2 T.
Emerging Lithographic Technologies VIII | 2004
Tamotsu Abe; Takashi Suganuma; Yousuke Imai; Hiroshi Someya; Hideo Hoshino; Masaki Nakano; Georg Soumagne; Hiroshi Komori; Yuichi Takabayashi; Hakaru Mizoguchi; Akira Endo; Koichi Toyoda; Yasuhiro Horiike
The main technological challenge of a future extreme ultraviolet (EUV) light source is the required average power of 115W at the intermediate focus. High repetition rate laser produced plasma (LPP) sources are very promising to face this challenge. We report the current status of the laser produced light source system we started to develop in 2002. The system consists of the following main components: The plasma target is a liquid xenon jet with a maximum diameter of 50 micrometer and a velocity of more than 30 m/s. A Nd:YAG laser oscillating at 1064 nm produces the plasma. The laser is a master oscillator power amplifier (MOPA) configuration with a maximum repetition rate of 10 kHz and an average power of 1kW. The EUV system currently delivers an average EUV in-band power of 4 W (2% bandwidth, 2π sr) having a stability of 0.54 % (1σ, 50-pulse moving average). In order to evaluate a further increase of the repetition rate, xenon jet characteristics and EUV plasma images have been investigated at 10 kHz. In addition, a conversion efficiency of 0.67% (2% bw, 2π sr) has been obtained at low repetition rate operation. This paper presents the progress of our LPP light source development.
Proceedings of SPIE | 2007
Akira Endo; Tamotsu Abe; Hideo Hoshino; Yoshifumi Ueno; Masaki Nakano; Takeshi Asayama; Hiroshi Komori; Georg Soumagne; Hakaru Mizoguchi; Akira Sumitani; Koichi Toyoda
We are developing a laser produced plasma light source for high volume manufacturing (HVM) EUV lithography. The light source is based on a short pulse, high power, high repetition rate CO2 master oscillator power amplifier (MOPA) laser system and a Tin droplet target. A maximum conversion efficiency of 4.5% was measured for a CO2 laser driven Sn plasma having a narrow spectrum at 13.5 nm. In addition, low debris generation was observed. The CO2 MOPA laser system is based on commercial high power cw CO2 lasers. We have achieved an average laser power of 7 kW at 100 kHz by a single laser beam with good beam quality. In a first step, a 50-W light source is under development. Based on a 10-kW CO2 laser, this light source is scalable to more than 100 W EUV in-band power.
Proceedings of SPIE, the International Society for Optical Engineering | 2006
Hakaru Mizoguchi; Akira Endo; Tatsuya Ariga; Taisuke Miura; Hideo Hoshino; Yoshifumi Ueno; Masaki Nakano; Hiroshi Komori; Akira Sumitani; Tamotsu Abe; Takashi Suganuma; Georg Soumagne; Hiroshi Someya; Yuichi Takabayashi; Koichi Toyoda
A CO2 laser driven Xe droplet plasma is presented as a light source for EUV lithography. A short-pulse TEA CO2 master oscillator power amplifier system and a pre-pulse Nd:YAG laser were used for initial experiment with 0.6% of CE from a Xe jet. A target technology is developed for high average power experiments based on a Xe droplet at 100kHz. Magnetic field ion mitigation is shown to work well in the pre-pulsed plasma combined with a CO2 laser main pulse. This result is very promising with respect to collector mirror lifetime extension by magnetic field mitigation. A master oscillator power amplifier (MOPA) CO2 laser system is under development with a few kW and 100 kHz repetition rate with less than 15ns laser pulse width using a waveguide Q-switched CO2 laser oscillator and RF-excited fast axial flow CO2 laser amplifiers.
Proceedings of SPIE | 2010
Hitoshi Nagano; Tamotsu Abe; Shinji Nagai; Masaki Nakano; Yoshihiko Akanuma; Shin Nakajima; Kouji Kakizaki; Akira Sumitani; Junichi Fujimoto; Hakaru Mizoguchi
The development status of key technologies for a HVM laser-produced plasma EUV light source is presented. This includes the high-power RF-excited CO2 laser, the Sn droplet target and the collector mirror lifetime enhancement technology. In this paper, we mainly discuss countermeasures for Sn ions and neutrals which cause mirror reflectivity degradation. The effectiveness of ion mitigation by a strong magnetic field was measured. We also observed that Sn neutrals were removed by etching gases and that the etching process did not degrade the effectiveness of the ion mitigation by the magnetic field. A part of this work was supported by the New Energy and Industrial Technology Development Organization (NEDO), Japan.
Optical Science and Technology, the SPIE 49th Annual Meeting | 2004
Masaki Nakano; Tamotsu Abe; Akira Endo
The main technological challenge of a future extreme ultraviolet (EUV) light source is the required average power of 115W at the intermediate focus. High repetition rate laser produced plasma (LPP) sources are very promising to face this challenge. We report the current status of the laser produced light source system we started to develop in 2002. The system consists of the following main components: The plasma target is a liquid xenon jet with a maximum diameter of 50 μm and a velocity of more than 30 m/s. A Nd:YAG laser oscillating at 1064 nm produces the plasma. The laser is a master oscillator power amplifier (MOPA) configuration with a maximum repetition rate of 10 kHz and an average power of 1.3kW. The EUV system currently delivers an average EUV in-band power of 7.2 W (2% bandwidth, 2π sr). In order to decrease debris and to reduce the supply of target material we started the development of a xenon droplet target. Currently droplets are generated in vacuum at a frequency of 140 kHz, i.e. 140000 droplets/s, having a diameter of 100 μm and a velocity of 28m/s.
Proceedings of SPIE, the International Society for Optical Engineering | 1999
Tatsuo Enami; Masaki Nakano; Takayuki Watanabe; Ayako Ohbo; Tsukasa Hori; Takashi Ito; Toshihiro Nishisaka; Akira Sumitani; Osamu Wakabayashi; Hakaru Mizoguchi; Hiroaki Nakarai; Naoto Hisanaga; Takeshi Matsunaga; Hirokazu Tanaka; Tatsuya Ariga; Syouich Sakanishi; Takeshi Okamoto; Ryoichi Nodomi; Takashi Suzuki; Yuichi Takabayashi; Hitoshi Tomaru; Kiyoharu Nakao
In the semiconductor industry, it is one of the most important issues to reduce manufacturing cost of the semiconductor device by increasing throughput. We have succeeded in the development of the high repetition rate excimer laser technology, and obtained the prospect of low CoO of the laser device. In this paper, we present the performance and advanced technologies of the newest model of the KrF excimer laser for microlithography; KLES-G20K. The laser achieves 20 W of output power with 0.6 pm bandwidth at 2 kHz. The pulse to pulse energy stability, 3 sigma is less than 6 percent and integrated energy stability is within +/- 0.4 percent. By our estimation, more than 50 percent of CoO of the laser device is cut by adopting developed machine compared to a present one.