Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Matteo Meneghini is active.

Publication


Featured researches published by Matteo Meneghini.


Journal of Applied Physics | 2013

Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies

G. Verzellesi; Davide Saguatti; Matteo Meneghini; Francesco Bertazzi; Michele Goano; Gaudenzio Meneghesso; Enrico Zanoni

Physical mechanisms causing the efficiency droop in InGaN/GaN blue light-emitting diodes and remedies proposed for droop mitigation are classified and reviewed. Droop mechanisms taken into consideration are Auger recombination, reduced active volume effects, carrier delocalization, and carrier leakage. The latter can in turn be promoted by polarization charges, inefficient hole injection, asymmetry between electron and hole densities and transport properties, lateral current crowding, quantum-well overfly by ballistic electrons, defect-related tunneling, and saturation of radiative recombination. Reviewed droop remedies include increasing the thickness or number of the quantum wells, improving the lateral current uniformity, engineering the quantum barriers (including multi-layer and graded quantum barriers), using insertion or injection layers, engineering the electron-blocking layer (EBL) (including InAlN, graded, polarization-doped, and superlattice EBL), exploiting reversed polarization (by either inv...


IEEE Transactions on Device and Materials Reliability | 2008

A Review on the Reliability of GaN-Based LEDs

Matteo Meneghini; Lorenzo Roberto Trevisanello; Gaudenzio Meneghesso; Enrico Zanoni

We review the degradation mechanisms that limit the reliability of GaN-based light-emitting diodes (LEDs). We propose a set of specific experiments, which is aimed at separately analyzing the degradation of the properties of the active layer, of the ohmic contacts and of the package/phosphor system. In particular, we show the following: 1) low-current density stress can determine the degradation of the active layer of the devices, implying modifications of the charge/deep level distribution with subsequent increase of the nonradiative recombination components; 2) high-temperature storage can significantly affect the properties of the ohmic contacts and semiconductor layer at the p-side of the devices, thus determining emission crowding and subsequent optical power decrease; and 3) high-temperature stress can significantly limit the optical properties of the package of high-power LEDs for lighting applications.


IEEE Transactions on Electron Devices | 2010

A Review on the Physical Mechanisms That Limit the Reliability of GaN-Based LEDs

Matteo Meneghini; Augusto Tazzoli; Giovanna Mura; Gaudenzio Meneghesso; Enrico Zanoni

We review the failure modes and mechanisms of gallium nitride (GaN)-based light-emitting diodes (LEDs). A number of reliability tests are presented, and specific degradation mechanisms of state-of-the-art LED structures are analyzed. In particular, we report recent results concerning the following issues: 1) the degradation of the active layer induced by direct current stress due to the increase in nonradiative recombination; 2) the degradation of LEDs submitted to reverse-bias stress tests; 3) the catastrophic failure of advanced LED structures related to electrostatic discharge events; 4) the degradation of the ohmic contacts of GaN-based LEDs; and 5) the degradation of the optical properties of the package/phosphors system of white LEDs. The presented results provide important information on the weaknesses of LED technology and on the design of procedures for reliability evaluation. Results are compared with literature data throughout the text.


IEEE Transactions on Electron Devices | 2013

Deep-Level Characterization in GaN HEMTs-Part I: Advantages and Limitations of Drain Current Transient Measurements

Davide Bisi; Matteo Meneghini; Carlo De Santi; Alessandro Chini; M. Dammann; Peter Brückner; M. Mikulla; Gaudenzio Meneghesso; Enrico Zanoni

This paper critically investigates the advantages and limitations of the current-transient methods used for the study of the deep levels in GaN-based high-electron mobility transistors (HEMTs), by evaluating how the procedures adopted for measurement and data analysis can influence the results of the investigation. The article is divided in two parts within Part I. 1) We analyze how the choice of the measurement and analysis parameters (such as the voltage levels used to induce the trapping phenomena and monitor the current transients, the duration of the filling pulses, and the method used for the extrapolation of the time constants of the capture/emission processes) can influence the results of the drain current transient investigation and can provide information on the location of the trap levels responsible for current collapse. 2) We present a database of defects described in more than 60 papers on GaN technology, which can be used to extract information on the nature and origin of the trap levels responsible for current collapse in AlGaN/GaN HEMTs. Within Part II, we investigate how self-heating can modify the results of drain current transient measurements on the basis of combined experimental activity and device simulation.


IEEE Transactions on Device and Materials Reliability | 2008

Accelerated Life Test of High Brightness Light Emitting Diodes

Lorenzo Roberto Trevisanello; Matteo Meneghini; Giovanna Mura; Massimo Vanzi; Maura Pavesi; Gaudenzio Meneghesso; Enrico Zanoni

Short-term accelerated life test activity on high brightness light emitting diodes is reported. Two families of 1-W light-emitting diodes (LEDs) from different manufacturers were submitted to distinct stress conditions: high temperature storage without bias and high dc current test. During aging, degradation mechanisms like light output decay and electrical property worsening were detected. In particular, the degradation in light efficiency induced by thermal storage was found to follow an exponential law, and the activation energy of the process was extrapolated. Aged devices exhibited a modification of the package epoxy color from white to brown. The instability of the package contributes to the overall degradation in terms of optical and spectral properties. In addition, an increase in thermal resistance was detected on one family of LEDs. This increase induces higher junction temperature levels during operative conditions. In order to correlate the degradation mechanisms and kinetics found during thermal stress, a high dc current stress was performed. Results from this comparative analysis showed similar behavior, implying that the degradation process of dc current aged devices is thermal activated due to high temperatures reached by the junction during stress. Finally, the different effects of the stress on two families of LEDs were taken into account in order to identify the impact of aging on device structure.


Applied Physics Letters | 2012

Time-dependent degradation of AlGaN/GaN high electron mobility transistors under reverse bias

Matteo Meneghini; Antonio Stocco; Marco Bertin; Denis Marcon; Alessandro Chini; Gaudenzio Meneghesso; Enrico Zanoni

This paper describes a detailed analysis of the time-dependent degradation kinetics of GaN-based high electron mobility transistors submitted to reverse-bias stress. We show that: (1) exposure to reverse-bias may induce recoverable changes in gate leakage and threshold voltage, due to the accumulation of negative charge within the AlGaN layer, and of positive charge at the AlGaN/GaN interface. (2) Permanent degradation consists in the generation of parasitic leakage paths. Several findings support the hypothesis that permanent degradation is due to a defect percolation process: (2(a)) for sufficiently long stress times, degradation occurs even below the “critical voltage” estimated by step stress experiments; (2(b)) before permanent degradation, gate current becomes noisy, indicating an increase in defect concentration; and (2(c)) time to breakdown strongly depends on the initial defectiveness of the samples.


IEEE Transactions on Device and Materials Reliability | 2008

Performance Degradation of High-Brightness Light Emitting Diodes Under DC and Pulsed Bias

Simone Buso; Giorgio Spiazzi; Matteo Meneghini; Gaudenzio Meneghesso

This paper presents the results of an experimental investigation of the performance of commercially available high-brightness light emitting diodes (HBLEDs). Three different families of white HBLEDs from three different manufacturers are considered. The main issues taken into account and reported in detail are the following: quality of the emitted light, impact of the driving strategy on the expected device lifetime, thermal management and related aging effects. The execution of a large number of accelerated stress tests reveals the weaknesses of the technology with respect to thermal degradation and the sensitivity of the device performance degradation to the adopted driving strategy. Furthermore, square-wave driving has been compared to conventional dc driving in terms of device performance and reliability. Comparison has been carried out for the same average current value of the driving waveforms. It has been found that square-wave driving can be an effective alternative to dc driving in terms of device efficiency only for high duty cycles. For low duty cycles, worse performance was detected due to the saturation of efficiency at high peak current levels. Reliability tests did not univocally indicate whether the use of pulsed bias can be more convenient than dc driving in terms of lumen maintenance. The three families of devices submitted to dc and pulsed stresses showed different behaviors, indicating that stress kinetics strongly depends on the LED technological structure and package thermal design.


International Journal of Microwave and Wireless Technologies | 2010

Reliability issues of Gallium Nitride High Electron Mobility Transistors

Gaudenzio Meneghesso; Matteo Meneghini; Augusto Tazzoli; Nicolo Ronchi; Antonio Stocco; Alessandro Chini; Enrico Zanoni

In the present paper we review the most recent degradation modes and mechanisms recently observed in AlGaN/GaN (Aluminum Gallium Nitride/Gallium Nitride). High Electron-Mobility Transistors (HEMTs), as resulting from a detailed accelerated testing campaign, based on reverse bias tests and DC accelerated life tests at various temperatures. Despite the large efforts spent in the last few years, and the progress in mean time to failure values, reliability of GaN HEMTs, and millimeter microwave integrated circuits still represent a relevant issue for the market penetration of these devices. The role of temperature in promoting GaN HEMT failure is controversial, and the accelerating degradation factors are largely unknown. The present paper proposes a methodology for the analysis of failure modes and mechanisms of GaN HEMTs, based on (i) DC and RF stress tests accompanied by an (ii) extensive characterization of traps using deep level transient spectroscopy and pulsed measurements, (iii) detailed analysis of electrical characteristics, and (iv) comparison with two-dimensional device simulations. Results of failure analysis using various microscopy and spectroscopy techniques are presented and failure mechanisms observed at the high electric field values typical of the operation of these devices are reviewed.


Journal of Applied Physics | 2009

A combined electro-optical method for the determination of the recombination parameters in InGaN-based light-emitting diodes

Matteo Meneghini; Nicola Trivellin; Gaudenzio Meneghesso; Enrico Zanoni; Ulrich Zehnder; Berthold Hahn

We present an electro-optical method for the extrapolation of the nonradiative and Auger recombination coefficients in InGaN/GaN Light-emitting diodes (LEDs). The method has the advantage of permitting the extrapolation of the recombination parameters of packaged devices, contrary to conventional techniques based on the analysis of quasibulk structures. For the analyzed devices, the average values of the nonradiative and Auger recombination coefficients have been determined to be equal to 2.3×107 s−1 and 1.0×10−30 cm6 s−1, respectively. These results are consistent with previous reports based on the analysis of quasibulk structures and on theoretical simulations. The method described in this paper constitutes an efficient tool for the analysis of the recombination dynamics in GaN-based LEDs. The results obtained within this work support the hypothesis on the importance of Auger recombination in determining the so-called efficiency droop in LED structures.


Journal of Applied Physics | 2006

Influence of short-term low current dc aging on the electrical and optical properties of InGaN blue light-emitting diodes

Francesca Rossi; Maura Pavesi; Matteo Meneghini; Giancarlo Salviati; M. Manfredi; Gaudenzio Meneghesso; A. Castaldini; A. Cavallini; Lorenzo Rigutti; Uwe Strass; Ulrich Zehnder; Enrico Zanoni

This work describes an experiment on degradation mechanisms of InGaN light-emitting diode (LED) test structures which do not fulfill the requirements of longlife products. We present a combined capacitance-voltage (C-V), deep level transient spectroscopy (DLTS), electroluminescence (EL), and cathodoluminescence (CL) study of short-term instabilities of InGaN∕GaN LEDs submitted to low current aging tests at room temperature. In the early stages of the aging tests, the EL and CL characterizations showed an optical power decrease, more prominent at low current levels. The C-V profiles indicated that the stress induced an apparent charge increase, well related to the deep level changes detected by DLTS and to the optical power decrease. It is supposed that the main cause of the degradation is the generation of nonradiative paths, due to the generation/propagation of defects activated by carrier transport.

Collaboration


Dive into the Matteo Meneghini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Denis Marcon

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge