Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michael Foley is active.

Publication


Featured researches published by Michael Foley.


Nature | 2011

Selective killing of cancer cells by a small molecule targeting the stress response to ROS

Lakshmi Raj; Takao Ide; Aditi U. Gurkar; Michael Foley; Monica Schenone; Xiaoyu Li; Nicola Tolliday; Todd R. Golub; Steven A. Carr; Alykhan F. Shamji; Anna Mandinova; Stuart L. Schreiber; Sam W. Lee

Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.


Cell | 2015

Advancing Biological Understanding and Therapeutics Discovery with Small-Molecule Probes

Stuart L. Schreiber; Joanne Kotz; Min Li; Jeffrey Aubé; Christopher P. Austin; John C. Reed; Hugh Rosen; E. Lucile White; Larry A. Sklar; Craig W. Lindsley; Benjamin Alexander; Joshua Bittker; Paul A. Clemons; Andrea de Souza; Michael Foley; Michelle Palmer; Alykhan F. Shamji; Mathias J. Wawer; Owen B. McManus; Meng Wu; Beiyan Zou; Haibo Yu; Jennifer E. Golden; Frank J. Schoenen; Anton Simeonov; Ajit Jadhav; Michael R. Jackson; Anthony B. Pinkerton; Thomas Dy Chung; Patrick R. Griffin

Small-molecule probes can illuminate biological processes and aid in the assessment of emerging therapeutic targets by perturbing biological systems in a manner distinct from other experimental approaches. Despite the tremendous promise of chemical tools for investigating biology and disease, small-molecule probes were unavailable for most targets and pathways as recently as a decade ago. In 2005, the NIH launched the decade-long Molecular Libraries Program with the intent of innovating in and broadening access to small-molecule science. This Perspective describes how novel small-molecule probes identified through the program are enabling the exploration of biological pathways and therapeutic hypotheses not otherwise testable. These experiences illustrate how small-molecule probes can help bridge the chasm between biological research and the development of medicines but also highlight the need to innovate the science of therapeutic discovery.


Nature Chemical Biology | 2016

Structural and conformational determinants of macrocycle cell permeability

Björn Over; Pär Matsson; Christian Tyrchan; Per Artursson; Bradley C. Doak; Michael Foley; Constanze Hilgendorf; Stephen Johnston; Maurice D. Lee; Richard J. Lewis; Patrick McCarren; Giovanni Muncipinto; Ulf Norinder; Matthew Perry; Jeremy R. Duvall; Jan Kihlberg

Macrocycles are of increasing interest as chemical probes and drugs for intractable targets like protein-protein interactions, but the determinants of their cell permeability and oral absorption are poorly understood. To enable rational design of cell-permeable macrocycles, we generated an extensive data set under consistent experimental conditions for more than 200 non-peptidic, de novo-designed macrocycles from the Broad Institutes diversity-oriented screening collection. This revealed how specific functional groups, substituents and molecular properties impact cell permeability. Analysis of energy-minimized structures for stereo- and regioisomeric sets provided fundamental insight into how dynamic, intramolecular interactions in the 3D conformations of macrocycles may be linked to physicochemical properties and permeability. Combined use of quantitative structure-permeability modeling and the procedure for conformational analysis now, for the first time, provides chemists with a rational approach to design cell-permeable non-peptidic macrocycles with potential for oral absorption.


Nature Biotechnology | 2016

High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines

Channing Yu; Aristotle M. Mannan; Griselda M. Yvone; Kenneth N. Ross; Yan Ling Zhang; Melissa A. Marton; Bradley Taylor; Andrew Crenshaw; Joshua Gould; Pablo Tamayo; Barbara A. Weir; Aviad Tsherniak; Bang Wong; Levi A. Garraway; Alykhan F. Shamji; Michelle Palmer; Michael Foley; Wendy Winckler; Stuart L. Schreiber; Andrew L. Kung; Todd R. Golub

Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control. Here we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM revealed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo.


PLOS ONE | 2015

Modulators of Hepatic Lipoprotein Metabolism Identified in a Search for Small-Molecule Inducers of Tribbles Pseudokinase 1 Expression

Marek M. Nagiec; Adam Skepner; Joseph Negri; Michelle Eichhorn; Nicolas Kuperwasser; Eamon Comer; Giovanni Muncipinto; Aravind Subramanian; Clary B. Clish; Kiran Musunuru; Jeremy R. Duvall; Michael Foley; Jose R. Perez; Michelle Palmer

Recent genome wide association studies have linked tribbles pseudokinase 1 (TRIB1) to the risk of coronary artery disease (CAD). Based on the observations that increased expression of TRIB1 reduces secretion of VLDL and is associated with lower plasma levels of LDL cholesterol and triglycerides, higher plasma levels of HDL cholesterol and reduced risk for myocardial infarction, we carried out a high throughput phenotypic screen based on quantitative RT-PCR assay to identify compounds that induce TRIB1 expression in human HepG2 hepatoma cells. In a screen of a collection of diversity-oriented synthesis (DOS)-derived compounds, we identified a series of benzofuran-based compounds that upregulate TRIB1 expression and phenocopy the effects of TRIB1 cDNA overexpression, as they inhibit triglyceride synthesis and apoB secretion in cells. In addition, the compounds downregulate expression of MTTP and APOC3, key components of the lipoprotein assembly pathway. However, CRISPR-Cas9 induced chromosomal disruption of the TRIB1 locus in HepG2 cells, while confirming its regulatory role in lipoprotein metabolism, demonstrated that the effects of benzofurans persist in TRIB1-null cells indicating that TRIB1 is sufficient but not necessary to transmit the effects of the drug. Remarkably, active benzofurans, as well as natural products capable of TRIB1 upregulation, also modulate hepatic cell cholesterol metabolism by elevating the expression of LDLR transcript and LDL receptor protein, while reducing the levels of PCSK9 transcript and secreted PCSK9 protein and stimulating LDL uptake. The effects of benzofurans are not masked by cholesterol depletion and are independent of the SREBP-2 regulatory circuit, indicating that these compounds represent a novel class of chemically tractable small-molecule modulators that shift cellular lipoprotein metabolism in HepG2 cells from lipogenesis to scavenging.


eLife | 2017

Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action

Jonathan B. Steinman; Cristina C Santarossa; Rand M. Miller; Lola S Yu; Anna S. Serpinskaya; Hideki Furukawa; Sachie Morimoto; Yuta Tanaka; Mitsuyoshi Nishitani; Moriteru Asano; Ruta Zalyte; Alison E Ondrus; Alex G. Johnson; Fan Ye; Maxence V. Nachury; Yoshiyuki Fukase; Kazuyoshi Aso; Michael Foley; Vladimir I. Gelfand; James K. Chen; Andrew P. Carter; Tarun M. Kapoor

Cytoplasmic dyneins are motor proteins in the AAA+ superfamily that transport cellular cargos toward microtubule minus-ends. Recently, ciliobrevins were reported as selective cell-permeable inhibitors of cytoplasmic dyneins. As is often true for first-in-class inhibitors, the use of ciliobrevins has in part been limited by low potency. Moreover, suboptimal chemical properties, such as the potential to isomerize, have hindered efforts to improve ciliobrevins. Here, we characterized the structure of ciliobrevins and designed conformationally constrained isosteres. These studies identified dynapyrazoles, inhibitors more potent than ciliobrevins. At single-digit micromolar concentrations dynapyrazoles block intraflagellar transport in the cilium and lysosome motility in the cytoplasm, processes that depend on cytoplasmic dyneins. Further, we find that while ciliobrevins inhibit both dyneins microtubule-stimulated and basal ATPase activity, dynapyrazoles strongly block only microtubule-stimulated activity. Together, our studies suggest that chemical-structure-based analyses can lead to inhibitors with improved properties and distinct modes of inhibition. DOI: http://dx.doi.org/10.7554/eLife.25174.001


Antiviral Research | 2016

Novel diversity-oriented synthesis-derived respiratory syncytial virus inhibitors identified via a high throughput replicon-based screen

Jeremy R. Duvall; Lynn VerPlank; Barbara Ludeke; Sarah M. McLeod; Maurice D. Lee; Karthick Vishwanathan; Carol Mulrooney; Sebastian le Quement; Qin Yu; Michelle Palmer; Paul R. Fleming; Rachel Fearns; Michael Foley; Christina Scherer

Respiratory syncytial virus (RSV) infections affect millions of children and adults every year. Despite the significant disease burden, there are currently no safe and effective vaccines or therapeutics. We employed a replicon-based high throughput screen combined with live-virus triaging assays to identify three novel diversity-oriented synthesis-derived scaffolds with activity against RSV. One of these small molecules is shown to target the RSV polymerase (L protein) to inhibit viral replication and transcription; the mechanisms of action of the other small molecules are currently unknown. The compounds described herein may provide attractive inhibitors for lead optimization campaigns.


Proceedings of the National Academy of Sciences of the United States of America | 2018

Antimalarial proteasome inhibitor reveals collateral sensitivity from intersubunit interactions and fitness cost of resistance

Laura A. Kirkman; Wenhu Zhan; Joseph Visone; Alexis Dziedziech; Pradeep K. Singh; Hao Fan; Xinran Tong; Igor Bruzual; Ryoma Hara; Masanori Kawasaki; Toshihiro Imaeda; Rei Okamoto; Kenjiro Sato; Mayako Michino; Elena Fernandez Alvaro; Liselle F. Guiang; Laura Sanz; Daniel Mota; Kavitha Govindasamy; Rong Wang; Yan Ling; Patrick Tumwebaze; George Sukenick; Lei Shi; Jeremie Vendome; Purnima Bhanot; Philip J. Rosenthal; Kazuyoshi Aso; Michael Foley; Roland A. Cooper

Significance Protozoal proteasome is a validated target for antimalarial drug development, but species selectivity of reported inhibitors is suboptimal. Here we identify inhibitors with improved selectivity for malaria proteasome β5 subunit over each active subunit of human proteasomes. These compounds kill the parasite in each stage of its life cycle. They interact synergistically with a β2 inhibitor and with artemisinin. Resistance to the β5 inhibitor arose through a point mutation in the nonproteolytic β6 subunit. The same mutation made the mutant strain more sensitive to a β2 inhibitor and less fit to withstand irradiation. These findings reveal complex interplay among proteasome subunits and introduce the prospect that combined inhibition of β2 and β5 subunits can afford synergy and thwart resistance. We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) β5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The β5 inhibitors synergize with a β2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA β5 inhibitor surprisingly harbored a point mutation in the noncatalytic β6 subunit. The β6 mutant was resistant to the species-selective Pf20S β5 inhibitor but remained sensitive to the species-nonselective β5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S β5 inhibitor was accompanied by increased sensitivity to a Pf20S β2 inhibitor. Finally, the β5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S β5 and β2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Nature | 2018

Retraction Note: Selective killing of cancer cells by a small molecule targeting the stress response to ROS

Lakshmi Raj; Takao Ide; Aditi U. Gurkar; Michael Foley; Monica Schenone; Xiaoyu Li; Nicola Tolliday; Todd R. Golub; Steven A. Carr; Alykhan F. Shamji; Anna Mandinova; Stuart L. Schreiber; Sam W. Lee

This Letter is being retracted owing to issues with Fig. 1d and Supplementary Fig. 31b, and the unavailability of original data for these figures that raise concerns regarding the integrity of the figures. Nature published two previous corrections related to this Letter1,2. These issues in aggregate undermine the confidence in the integrity of this study. Authors Michael Foley, Monica Schenone, Nicola J. Tolliday, Todd R. Golub, Steven A. Carr, Alykhan F. Shamji, Andrew M. Stern and Stuart L. Schreiber agree with the Retraction. Authors Lakshmi Raj, Takao Ide, Aditi U. Gurkar, Anna Mandinova and Sam W. Lee disagree with the Retraction. Author Xiaoyu Li did not respond.


Biochemistry | 2018

Aminopyrimidine Class Aggregation Inhibitor Effectively Blocks Aβ–Fibrinogen Interaction and Aβ-Induced Contact System Activation

Pradeep Singh; Masanori Kawasaki; Hanna E. Berk-Rauch; Goushi Nishida; Takeshi Yamasaki; Michael Foley; Erin H. Norris; Sidney Strickland; Kazuyoshi Aso; Hyung Jin Ahn

Accumulating evidence suggests that fibrinogen, a key protein in the coagulation cascade, plays an important role in circulatory dysfunction in Alzheimers disease (AD). Previous work has shown that the interaction between fibrinogen and β-amyloid (Aβ), a hallmark pathological protein in AD, induces plasmin-resistant abnormal blood clots, delays fibrinolysis, increases inflammation, and aggravates cognitive function in mouse models of AD. Since Aβ oligomers have a much stronger affinity for fibrinogen than Aβ monomers, we tested whether amyloid aggregation inhibitors could block the Aβ-fibrinogen interaction and found that some Aβ aggregation inhibitors showed moderate inhibitory efficacy against this interaction. We then modified a hit compound so that it not only showed a strong inhibitory efficacy toward the Aβ-fibrinogen interaction but also retained its potency toward the Aβ42 aggregation inhibition process. Furthermore, our best hit compound, TDI-2760, modulated Aβ42-induced contact system activation, a pathological condition observed in some AD patients, in addition to inhibiting the Aβ-fibrinogen interaction and Aβ aggregation. Thus, TDI-2760 has the potential to lessen vascular abnormalities as well as Aβ aggregation-driven pathology in AD.

Collaboration


Dive into the Michael Foley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge