Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Patrick Reinhard is active.

Publication


Featured researches published by Patrick Reinhard.


Nature Materials | 2013

Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells

Adrian Chirilă; Patrick Reinhard; Fabian Pianezzi; Patrick Bloesch; Alexander R. Uhl; Carolin M. Fella; Lukas Kranz; Debora Keller; Christina Gretener; Harald Hagendorfer; Dominik Jaeger; Rolf Erni; Shiro Nishiwaki; Stephan Buecheler; A.N. Tiwari

Thin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance. Here we present a new sequential post-deposition treatment of the CIGS layer with sodium and potassium fluoride that enables fabrication of flexible photovoltaic devices with a remarkable conversion efficiency due to modified interface properties and mitigation of optical losses in the CdS buffer layer. The described treatment leads to a significant depletion of Cu and Ga concentrations in the CIGS near-surface region and enables a significant thickness reduction of the CdS buffer layer without the commonly observed losses in photovoltaic parameters. Ion exchange processes, well known in other research areas, are proposed as underlying mechanisms responsible for the changes in chemical composition of the deposited CIGS layer and interface properties of the heterojunction.


Physical Chemistry Chemical Physics | 2014

Unveiling the effects of post-deposition treatment with different alkaline elements on the electronic properties of CIGS thin film solar cells

Fabian Pianezzi; Patrick Reinhard; Adrian Chirilă; Benjamin Bissig; Shiro Nishiwaki; Stephan Buecheler; A.N. Tiwari

Thin film solar cells with a Cu(In,Ga)Se2 (CIGS) absorber layer achieved efficiencies above 20%. In order to achieve such high performance the absorber layer of the device has to be doped with alkaline material. One possibility to incorporate alkaline material is a post deposition treatment (PDT), where a thin layer of NaF and/or KF is deposited onto the completely grown CIGS layer. In this paper we discuss the effects of PDT with different alkaline elements (Na and K) on the electronic properties of CIGS solar cells. We demonstrate that whereas Na is more effective in increasing the hole concentration in CIGS, K significantly improves the pn-junction quality. The beneficial role of K in improving the PV performance is attributed to reduced recombination at the CdS/CIGS interface, as revealed by temperature dependent J-V measurements, due to a stronger electronically inverted CIGS surface region. Computer simulations with the software SCAPS are used to verify this model. Furthermore, we show that PDT with either KF or NaF has also a distinct influence on other electronic properties of the device such as the position of the N1 signal in admittance spectroscopy and the roll-over of the J-V curve at low temperature. In view of the presented results we conclude that a model based on a secondary diode at the CIGS/Mo interface can best explain these features.


photovoltaic specialists conference | 2013

Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules

Patrick Reinhard; Adrian Chirila; P. Blösch; Fabian Pianezzi; Shiro Nishiwaki; Stephan Buechelers; A.N. Tiwari

Solar cells based on chalcopyrite Cu(In, Ga)Se2 (CIGS) absorber layers show the highest potential for low-cost solar electricity by yielding comparable efficiencies to polycrystalline Si wafer-based cells, while also offering inherent advantages of thin-film technology for cost reduction.Highest efficiency of 20.3% was recently achieved on rigid glass substrate. Deposition of CIGS films onto flexible substrates opens new fields of applications and could significantly decrease production costs by employing roll-to-roll manufacturing and monolithic integration of solar cells to develop modules. Whereas, some years back, it seemed difficult to reach performance levels on flexible substrates similar to that obtained on glass, recent results on flexible polyimide prove that the efficiency gap can be significantly reduced. Different materials, i.e., mostly metals or plastics, have been used as flexible substrates, with highest cell efficiency of 18.7% demonstrated on a polyimide film. Improvements in efficiencies of flexible solar cells and modules achieved over the past few decades are discussed in this paper, addressing the main characteristics of substrate materials. The technology transfer from laboratory research to large-scale industrial production of CIGS modules leads to new manufacturing challenges, mainly for CIGS deposition, interconnections of cells, and long-term performance stability.


Journal of Physical Chemistry Letters | 2015

High-Efficiency Polycrystalline Thin Film Tandem Solar Cells

Lukas Kranz; Antonio Abate; Thomas Feurer; Fan Fu; Enrico Avancini; Johannes Löckinger; Patrick Reinhard; Shaik M. Zakeeruddin; Michael Grätzel; Stephan Buecheler; A.N. Tiwari

A promising way to enhance the efficiency of CIGS solar cells is by combining them with perovskite solar cells in tandem devices. However, so far, such tandem devices had limited efficiency due to challenges in developing NIR-transparent perovskite top cells, which allow photons with energy below the perovskite band gap to be transmitted to the bottom cell. Here, a process for the fabrication of NIR-transparent perovskite solar cells is presented, which enables power conversion efficiencies up to 12.1% combined with an average sub-band gap transmission of 71% for photons with wavelength between 800 and 1000 nm. The combination of a NIR-transparent perovskite top cell with a CIGS bottom cell enabled a tandem device with 19.5% efficiency, which is the highest reported efficiency for a polycrystalline thin film tandem solar cell. Future developments of perovskite/CIGS tandem devices are discussed and prospects for devices with efficiency toward and above 27% are given.


Nano Letters | 2015

Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

Patrick Reinhard; Benjamin Bissig; Fabian Pianezzi; Harald Hagendorfer; Giovanna Sozzi; R. Menozzi; Christina Gretener; Shiro Nishiwaki; Stephan Buecheler; A.N. Tiwari

Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.


ACS Applied Materials & Interfaces | 2015

Potassium Postdeposition Treatment-Induced Band Gap Widening at Cu(In,Ga)Se2 Surfaces – Reason for Performance Leap?

Evelyn Handick; Patrick Reinhard; Jan-Hendrik Alsmeier; Leonard Köhler; Fabian Pianezzi; Stefan Krause; Mihaela Gorgoi; Eiji Ikenaga; Norbert Koch; Regan G. Wilks; Stephan Buecheler; A.N. Tiwari; M. Bär

Direct and inverse photoemission were used to study the impact of alkali fluoride postdeposition treatments on the chemical and electronic surface structure of Cu(In,Ga)Se2 (CIGSe) thin films used for high-efficiency flexible solar cells. We find a large surface band gap (E(g)(Surf), up to 2.52 eV) for a NaF/KF-postdeposition treated (PDT) absorber significantly increases compared to the CIGSe bulk band gap and to the Eg(Surf) of 1.61 eV found for an absorber treated with NaF only. Both the valence band maximum (VBM) and the conduction band minimum shift away from the Fermi level. Depth-dependent photoemission measurements reveal that the VBM decreases with increasing surface sensitivity for both samples; this effect is more pronounced for the NaF/KF-PDT CIGSe sample. The observed electronic structure changes can be linked to the recent breakthroughs in CIGSe device efficiencies.


Journal of Applied Physics | 2013

Defect formation in Cu(In,Ga)Se2 thin films due to the presence of potassium during growth by low temperature co-evaporation process

Fabian Pianezzi; Patrick Reinhard; A. Chirilă; Shiro Nishiwaki; Benjamin Bissig; Stephan Buecheler; Ayodhya N. Tiwari

Doping the Cu(In,Ga)Se2 (CIGS) absorber layer with alkaline metals is necessary to process high efficiency solar cells. When growth of CIGS solar cells is performed on soda-lime glass (SLG), the alkaline elements naturally diffuse from the substrate into the absorber layer. On the other hand, when CIGS is grown on alkaline free substrates, the alkaline metals have to be added from another source. In the past, Na was believed to be the most important dopant of the alkaline elements, even though K was also observed to diffuse into CIGS from the SLG. Recently, the beneficial effect of a post deposition treatment with KF was pointed out and enabled the production of a 20.4% CIGS solar cell grown at low substrate temperature (<500 °C). However, possible negative effects of the presence or addition of the alkaline impurities during the low temperature growth process were observed for Na, but were not investigated for K so far. In this study, we investigate in detail the role of K on the defect formation in CIGS...


IEEE Journal of Photovoltaics | 2015

Cu(In,Ga)Se

Patrick Reinhard; Fabian Pianezzi; Benjamin Bissig; Adrian Chirila; P. Blösch; Shiro Nishiwaki; Stephan Buecheler; A.N. Tiwari

Thin-film solar cells based on the chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber material show high potential for further cost reduction in photovoltaics. Compared with polycrystalline silicon (p-Si) wafer technology, thin-film technology has inherent advantages due to lower energy and material consumption during production but has typically shown lower conversion efficiency. However, in the past two years, new scientific insights have enabled the processing of CIGS solar cells with efficiencies up to 21%, surpassing the p-Si wafer value of 20.4% efficiency for the first time. Now several research groups report record cell efficiency values above 20% using different deposition processes and buffer layers. The presence of potassium was observed in many CIGS devices over the years, but it is only very recently that differences with Na have started being taken into full consideration for device processing and that K was added intentionally to the absorber. In this study, previous reports showing the presence of potassium are reviewed and discussed in more detail. Furthermore, on a scale-up perspective, additional progress has also taken place with CIGS minimodules achieving efficiency up to almost 19% and where further increase can be expected in the near future with the improvements induced by the use of potassium. This shows that the CIGS technology is continuously progressing not only on scientific level but on technological level as well.


Journal of Applied Physics | 2015

_{\bf 2}

Timo Jäger; Yaroslav E. Romanyuk; Benjamin Bissig; Fabian Pianezzi; Shiro Nishiwaki; Patrick Reinhard; Jérôme Steinhauser; Johannes Schwenk; A.N. Tiwari

Hydrogenated indium oxide (IOH) is implemented as transparent front contact in Cu(In,Ga)Se2 (CIGS) solar cells, leading to an open circuit voltage VOC enhanced by ∼20 mV as compared to reference devices with ZnO:Al (AZO) electrodes. This effect is reproducible in a wide range of contact sheet resistances corresponding to various IOH thicknesses. We present the detailed electrical characterization of glass/Mo/CIGS/CdS/intrinsic ZnO (i-ZnO)/transparent conductive oxide (TCO) with different IOH/AZO ratios in the front TCO contact in order to identify possible reasons for the enhanced VOC. Temperature and illumination intensity-dependent current-voltage measurements indicate that the dominant recombination path does not change when AZO is replaced by IOH, and it is mainly limited to recombination in the space charge region and at the junction interface of the solar cell. The main finding is that the introduction of even a 5 nm-thin IOH layer at the i-ZnO/TCO interface already results in a step-like increase i...


Microscopy and Microanalysis | 2014

Thin-Film Solar Cells and Modules—A Boost in Efficiency Due to Potassium

Debora Keller; Stephan Buecheler; Patrick Reinhard; Fabian Pianezzi; Darius Pohl; Alexander Surrey; Bernd Rellinghaus; Rolf Erni; A.N. Tiwari

This work presents a systematic study that evaluates the feasibility and reliability of local band gap measurements of Cu(In,Ga)Se2 thin films by valence electron energy-loss spectroscopy (VEELS). The compositional gradients across the Cu(In,Ga)Se2 layer cause variations in the band gap energy, which are experimentally determined using a monochromated scanning transmission electron microscope (STEM). The results reveal the expected band gap variation across the Cu(In,Ga)Se2 layer and therefore confirm the feasibility of local band gap measurements of Cu(In,Ga)Se2 by VEELS. The precision and accuracy of the results are discussed based on the analysis of individual error sources, which leads to the conclusion that the precision of our measurements is most limited by the acquisition reproducibility, if the signal-to-noise ratio of the spectrum is high enough. Furthermore, we simulate the impact of radiation losses on the measured band gap value and propose a thickness-dependent correction. In future work, localized band gap variations will be measured on a more localized length scale to investigate, e.g., the influence of chemical inhomogeneities and dopant accumulations at grain boundaries.

Collaboration


Dive into the Patrick Reinhard's collaboration.

Top Co-Authors

Avatar

Stephan Buecheler

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

A.N. Tiwari

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Fabian Pianezzi

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin Bissig

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Shiro Nishiwaki

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Adrian Chirila

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Adrian Chirilă

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Debora Keller

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Enrico Avancini

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Harald Hagendorfer

Swiss Federal Laboratories for Materials Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge