Peter B. Griffin
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Peter B. Griffin.
IEEE Design & Test of Computers | 2007
Richard B. Fair; Andrey Khlystov; Tina D. Tailor; V. Ivanov; Randall Evans; Peter B. Griffin; Vijay Srinivasan; Vamsee K. Pamula; Michael G. Pollack; Jack G. Zhou
Digital-microfluidic lab-on-a chip (LoC) technology offers a platform for developing diagnostic applications with the advantages of portability, sample and reagent volume reduction, faster analysis, increased automation, low power consumption, compatibility with mass manufacturing, and high throughput. In addition to diagnostics, digital microfluidics is finding use in airborne chemical detection, DNA sequencing by synthesis, and tissue engineering. In this article, we review efforts to develop various LoC applications using electrowetting-based digital microfluidics. We describe these applications, their implementation, and associated design issues.
Applied Physics Letters | 2003
Chi On Chui; Kailash Gopalakrishnan; Peter B. Griffin; James D. Plummer; Krishna C. Saraswat
We have demonstrated symmetrically high levels of electrical activation of both p- and n-type dopants in germanium. Rapid thermal annealing of various commonly implanted dopant species were performed in the temperature range of 600–850 °C in germanium substrates. Diffusion studies were also carried out by using different anneal times and temperatures. T-SUPREM™ simulations were used to fit the experimental profiles and to extract the diffusion coefficient of various dopants.
Applied Physics Letters | 2007
Koji Tsunoda; Y. Fukuzumi; John R. Jameson; Ziwen Wang; Peter B. Griffin; Yoshio Nishi
Bipolar resistive switching was found in thin polycrystalline TiO2 films formed by the thermal oxidation of sputtered Ti films. With a Ag top electrode, TiO2 film, and Pt bottom electrode, bistable resistive switching with a low operating voltage and a good uniformity was observed repeatedly without an initial electrical “forming” process. This switching phenomenon might be described as the formation and rupture of a filamentary conductive path consisting of a chain of Ag atoms. The temperature dependence of the switching voltage is discussed in terms of interstitial ionic diffusion of Ag in the TiO2 matrix.
IEEE Transactions on Electron Devices | 2005
Kailash Gopalakrishnan; Peter B. Griffin; James D. Plummer
One of the fundamental problems in the continued scaling of transistors is the 60 mV/dec room temperature limit in the subthreshold slope. In part I this work, a novel transistor based on the field-effect control of impact-ionization (I-MOS) is explored through detailed device and circuit simulations. The I-MOS uses gated-modulation of the breakdown voltage of a p-i-n diode to switch from the OFF state to the ON state and vice-versa. Device simulations using MEDICI show that the I-MOS has a subthreshold slope of 5 mV/dec or lower and I/sub ON/>1 mA//spl mu/m at 400 K. Simulations were used to further explore the characteristics of the I-MOS including the transients of the turn-on mechanism, the short-channel effect, scalability, and other important device attributes. Circuit mode simulations were also used to explore circuit design using I-MOS devices and the design of an I-MOS inverter. These simulations indicated that the I-MOS has the potential to replace CMOS in high performance and low power digital applications. Part II of this work focuses on I-MOS experimental results with emphasis on hot carrier effects, germanium p-i-n data and breakdown in recessed structure devices.
Journal of Applied Physics | 1999
Ant Ural; Peter B. Griffin; James D. Plummer
An identical set of thermal oxidation and nitridation experiments has been performed for four common dopants and self-diffusion in Si. Selectively perturbing the equilibrium point-defect concentrations by these surface reactions is a powerful tool for identifying the relative importance of the various atomic-scale diffusion mechanisms. We obtain bounds on the fractional contributions of the self-interstitial, vacancy, and concerted exchange mechanisms for arsenic, boron, phosphorus, antimony, and self-diffusion in Si at temperatures of 1100 and 1000 °C. These bounds are found by simultaneously solving a system of equations making only very conservative assumptions. The validity of common approximations found in previous work and their effects on the results are also analyzed in detail. We find that B and P diffuse by a self-interstitial mechanism, whereas Sb diffusion is almost exclusively vacancy mediated. As and self-diffusion, on the other hand, exhibit evidence for a dual vacancy-interstitial mechanis...
Proceedings of the IEEE | 2001
James D. Plummer; Peter B. Griffin
The integrated circuit (IC) industry has followed a steady path of shrinking device geometries for more than 30 years. It is widely believed that this process will continue for at least another ten years. However there are increasingly difficult materials and technology problems to be solved over the next decade if this is to actually occur, and beyond ten years there is great uncertainty about the ability to continue scaling metal-oxide-semiconductor field-effect transistor (MOSFET) structures. This paper describes some of the the most challenging materials and process issues to be faced in the future and where possible solutions are known, describes these potential solutions. The paper is written with the underlying assumption that the basic metal-oxide-semiconductor (MOS) transistor will remain the dominant switching device used in ICs and it further assumes that silicon will remain the dominant substrate material.
Journal of Applied Physics | 2002
Yayoi Takamura; Peter B. Griffin; James D. Plummer
Laser annealing is being investigated as an alternative method to activate dopants and repair the lattice damage from ion implantation. The unique properties of the laser annealing process allow for active dopant concentrations that exceed equilibrium solubility limits. However, these super-saturated dopant concentrations exist in a metastable state and deactivate upon subsequent thermal processing. Previously, this group compared the electrical characteristics of the deactivation behavior of common dopants (P, B, and Sb) across a range of concentrations and annealing conditions. Boron and antimony were shown to be stable species against deactivation while P and As deactivate quickly at temperatures as low as 500 °C. In this work, we present additional data to understand the underlying physical mechanisms involved in the deactivation process. It is proposed that As and P deactivate through the formation of small dopant—defect clusters while B and Sb deactivate through precipitation.
IEEE Electron Device Letters | 2006
Jia Feng; Yaocheng Liu; Peter B. Griffin; James D. Plummer
The monolithic integration of germanium-on-insulator (GeOI) p-MOSFETs with silicon n-MOSFETs on a silicon substrate is demonstrated. The GeOI p-MOSFETs are fabricated on the oxide for silicon device isolation based on the newly developed rapid-melt-growth method. CMOS inverters consisting of the silicon n-MOSFET and GeOI p-MOSFET were obtained, and the measured results show that the processing of high-performance GeOI devices is compatible with bulk-silicon technology
Journal of Applied Physics | 2005
Yue Liang; William D. Nix; Peter B. Griffin; James D. Plummer
This paper explores stress management in SiGe with two kinds of structures, namely, epitaxial SiGe films on small pillars and fins. In addition to the compliant substrate effect in the film/fin structures, the geometric effect in the film/pillar structures plays another important role in critical thickness enhancement. The stress-strain states of these two systems are calculated and the equilibrium critical thicknesses are predicted, using the work method, for different fin thicknesses, pillar radii, and Ge concentrations. Compared to conventional films grown on planar bulk substrates, the critical thicknesses for fin and pillar structures are increased significantly. SiGe films with various thicknesses and compositions were epitaxially grown around vertical fins and horizontal membranes with thicknesses as thin as 12nm to demonstrate the concepts. Cross-sectional transmission electron microscopy analysis showed that dislocation densities are much smaller than for films grown on bulk Si substrates. The di...
IEEE Transactions on Electron Devices | 2005
Kailash Gopalakrishnan; Raymond Woo; Christoph Jungemann; Peter B. Griffin; James D. Plummer
Part I of this paper dealt with the fundamental understanding of device physics and circuit design in a novel transistor, based on the field-effect control of impact-ionization (I-MOS). This paper focuses on experimental results obtained on various silicon-based prototypes of the I-MOS. The fabricated p-channel I-MOS devices showed extremely abrupt transitions from the OFF state to the ON state with a subthreshold slope of less than 10 mV/dec at 300 K. These first experimental prototypes of the I-MOS also showed significant hot carrier effects resulting in threshold voltage shifts and degradation of subthreshold slope with repeated measurements. Hot carrier damage was seen to be much worse in nMOS devices than in pMOS devices. Monte Carlo simulations revealed that the hot carrier damage was caused by holes (electrons) underneath the gate in pMOS (nMOS) devices and, thus, consequently explained the difference in hot carrier effects in p-channel versus n-channel I-MOS transistors. Recessed channel devices were also explored to understand the effects of surfaces on the enhancement in the breakdown voltage in I-MOS devices. In order to reduce the breakdown voltage needed for device operation, simple p-i-n devices were fabricated in germanium. These devices showed much lower values of breakdown voltage and excellent matches to MEDICI simulations.