Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rachelle Paul-Brutus is active.

Publication


Featured researches published by Rachelle Paul-Brutus.


PLOS Genetics | 2012

Genome-Wide Association Study Identifies Chromosome 10q24.32 Variants Associated with Arsenic Metabolism and Toxicity Phenotypes in Bangladesh

Brandon L. Pierce; Muhammad G. Kibriya; Lin Tong; Farzana Jasmine; Maria Argos; Shantanu Roy; Rachelle Paul-Brutus; Ronald Rahaman; Muhammad Rakibuz-Zaman; Faruque Parvez; Alauddin Ahmed; Iftekhar Quasem; Samar Kumar Hore; Shafiul Alam; Tariqul Islam; Vesna Slavkovich; Mary V. Gamble; Yunus; Mahfuzar Rahman; John A. Baron; Joseph H. Graziano; Habibul Ahsan

Arsenic contamination of drinking water is a major public health issue in many countries, increasing risk for a wide array of diseases, including cancer. There is inter-individual variation in arsenic metabolism efficiency and susceptibility to arsenic toxicity; however, the basis of this variation is not well understood. Here, we have performed the first genome-wide association study (GWAS) of arsenic-related metabolism and toxicity phenotypes to improve our understanding of the mechanisms by which arsenic affects health. Using data on urinary arsenic metabolite concentrations and approximately 300,000 genome-wide single nucleotide polymorphisms (SNPs) for 1,313 arsenic-exposed Bangladeshi individuals, we identified genome-wide significant association signals (P<5×10−8) for percentages of both monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) near the AS3MT gene (arsenite methyltransferase; 10q24.32), with five genetic variants showing independent associations. In a follow-up analysis of 1,085 individuals with arsenic-induced premalignant skin lesions (the classical sign of arsenic toxicity) and 1,794 controls, we show that one of these five variants (rs9527) is also associated with skin lesion risk (P = 0.0005). Using a subset of individuals with prospectively measured arsenic (n = 769), we show that rs9527 interacts with arsenic to influence incident skin lesion risk (P = 0.01). Expression quantitative trait locus (eQTL) analyses of genome-wide expression data from 950 individuals lymphocyte RNA suggest that several of our lead SNPs represent cis-eQTLs for AS3MT (P = 10−12) and neighboring gene C10orf32 (P = 10−44), which are involved in C10orf32-AS3MT read-through transcription. This is the largest and most comprehensive genomic investigation of arsenic metabolism and toxicity to date, the only GWAS of any arsenic-related trait, and the first study to implicate 10q24.32 variants in both arsenic metabolism and arsenical skin lesion risk. The observed patterns of associations suggest that MMA% and DMA% have distinct genetic determinants and support the hypothesis that DMA is the less toxic of these two methylated arsenic species. These results have potential translational implications for the prevention and treatment of arsenic-associated toxicities worldwide.


International Journal of Epidemiology | 2013

Arsenic metabolism efficiency has a causal role in arsenic toxicity: Mendelian randomization and gene-environment interaction

Brandon L. Pierce; Lin Tong; Maria Argos; Jianjun Gao; Farzana Jasmine; Shantanu Roy; Rachelle Paul-Brutus; Ronald Rahaman; Muhammad Rakibuz-Zaman; Faruque Parvez; Alauddin Ahmed; Iftekhar Quasem; Samar Kumar Hore; Shafiul Alam; Tariqul Islam; Judith Harjes; Golam Sarwar; Vesna Slavkovich; Mary V. Gamble; Yu Chen; Mohammad Yunus; Mahfuzar Rahman; John Baron; Joseph H. Graziano; Habibul Ahsan

BACKGROUND Arsenic exposure through drinking water is a serious global health issue. Observational studies suggest that individuals who metabolize arsenic efficiently are at lower risk for toxicities such as arsenical skin lesions. Using two single nucleotide polymorphisms(SNPs) in the 10q24.32 region (near AS3MT) that show independent associations with metabolism efficiency, Mendelian randomization can be used to assess whether the association between metabolism efficiency and skin lesions is likely to be causal. METHODS Using data on 2060 arsenic-exposed Bangladeshi individuals, we estimated associations for two 10q24.32 SNPs with relative concentrations of three urinary arsenic species (representing metabolism efficiency): inorganic arsenic (iAs), monomethylarsonic acid(MMA) and dimethylarsinic acid (DMA). SNP-based predictions of iAs%, MMA% and DMA% were tested for association with skin lesion status among 2483 cases and 2857 controls. RESULTS Causal odds ratios for skin lesions were 0.90 (95% confidence interval[CI]: 0.87, 0.95), 1.19 (CI: 1.10, 1.28) and 1.23 (CI: 1.12, 1.36)for a one standard deviation increase in DMA%, MMA% and iAs%,respectively. We demonstrated genotype-arsenic interaction, with metabolism-related variants showing stronger associations with skin lesion risk among individuals with high arsenic exposure (synergy index: 1.37; CI: 1.11, 1.62). CONCLUSIONS We provide strong evidence for a causal relationship between arsenic metabolism efficiency and skin lesion risk. Mendelian randomization can be used to assess the causal role of arsenic exposure and metabolism in a wide array of health conditions.exposure and metabolism in a wide array of health conditions.Developing interventions that increase arsenic metabolism efficiency are likely to reduce the impact of arsenic exposure on health.


American Journal of Epidemiology | 2012

Association Between Arsenic Exposure From Drinking Water and Plasma Levels of Cardiovascular Markers

Fen Wu; Farzana Jasmine; Muhammad G. Kibriya; Mengling Liu; Oktawia P. Wójcik; Faruque Parvez; Ronald Rahaman; Shantanu Roy; Rachelle Paul-Brutus; Stephanie Segers; Vesna Slavkovich; Tariqul Islam; Diane Levy; Jacob L. Mey; Alexander van Geen; Joseph H. Graziano; Habibul Ahsan; Yu Chen

The authors conducted a cross-sectional study to assess the relation between arsenic exposure from drinking water and plasma levels of markers of systemic inflammation and endothelial dysfunction (matrix metalloproteinase-9, myeloperoxidase, plasminogen activator inhibitor-1, soluble E-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), and soluble vascular adhesion molecule-1 (VCAM-1)) using baseline data from 668 participants (age, >30 years) in the Health Effects of Arsenic Longitudinal Study in Bangladesh (2007-2008). Both well water arsenic and urinary arsenic were positively associated with plasma levels of soluble VCAM-1. For every 1-unit increase in log-transformed well water arsenic (ln μg/L) and urinary arsenic (ln μg/g creatinine), plasma soluble VCAM-1 was 1.02 (95% confidence interval: 1.01, 1.03) and 1.04 (95% confidence interval: 1.01, 1.07) times greater, respectively. There was a significant interaction between arsenic exposure and higher body mass index, such that the increased levels of plasminogen activator inhibitor-1 and soluble VCAM-1 associated with arsenic exposure were stronger among people with higher body mass index. The findings indicate an effect of chronic arsenic exposure from drinking water on vascular inflammation and endothelial dysfunction that could be modified by body mass index and also suggest a potential mechanism underlying the association between arsenic exposure and cardiovascular disease.


PLOS ONE | 2012

A Genome-Wide Study of Cytogenetic Changes in Colorectal Cancer Using SNP Microarrays: Opportunities for Future Personalized Treatment

Farzana Jasmine; Ronald Rahaman; Charlotte Dodsworth; Shantanu Roy; Rupash Paul; Maruf Raza; Rachelle Paul-Brutus; Mohammed Kamal; Habibul Ahsan; Muhammad G. Kibriya

In colorectal cancer (CRC), chromosomal instability (CIN) is typically studied using comparative-genomic hybridization (CGH) arrays. We studied paired (tumor and surrounding healthy) fresh frozen tissue from 86 CRC patients using Illuminas Infinium-based SNP array. This method allowed us to study CIN in CRC, with simultaneous analysis of copy number (CN) and B-allele frequency (BAF) - a representation of allelic composition. These data helped us to detect mono-allelic and bi-allelic amplifications/deletion, copy neutral loss of heterozygosity, and levels of mosaicism for mixed cell populations, some of which can not be assessed with other methods that do not measure BAF. We identified associations between CN abnormalities and different CRC phenotypes (histological diagnosis, location, tumor grade, stage, MSI and presence of lymph node metastasis). We showed commonalities between regions of CN change observed in CRC and the regions reported in previous studies of other solid cancers (e.g. amplifications of 20q, 13q, 8q, 5p and deletions of 18q, 17p and 8p). From Therapeutic Target Database, we identified relevant drugs, targeted to the genes located in these regions with CN changes, approved or in trials for other cancers and common diseases. These drugs may be considered for future therapeutic trials in CRC, based on personalized cytogenetic diagnosis. We also found many regions, harboring genes, which are not currently targeted by any relevant drugs that may be considered for future drug discovery studies. Our study shows the application of high density SNP arrays for cytogenetic study in CRC and its potential utility for personalized treatment.


Environmental Health Perspectives | 2014

Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh.

Maria Argos; Lin Chen; Farzana Jasmine; Lin Tong; Brandon L. Pierce; Shantanu Roy; Rachelle Paul-Brutus; Mary V. Gamble; Kristin N. Harper; Faruque Parvez; Mahfuzar Rahman; Muhammad Rakibuz-Zaman; Vesna Slavkovich; John A. Baron; Joseph H. Graziano; Muhammad G. Kibriya; Habibul Ahsan

Background: Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. Objective: Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. Methods: We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. Results: In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10–7. Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10–11) and blood arsenic concentrations (p = 1.48 × 10–11). Three additional novel methylation loci—SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)—were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. Conclusions: We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions. Citation: Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. 2015. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. Environ Health Perspect 123:64–71; http://dx.doi.org/10.1289/ehp.1307884


PLOS Genetics | 2014

Mediation analysis demonstrates that trans-eQTLs are often explained by cis-mediation: a genome-wide analysis among 1,800 South Asians.

Brandon L. Pierce; Lin Tong; Lin Chen; Ronald Rahaman; Maria Argos; Farzana Jasmine; Shantanu Roy; Rachelle Paul-Brutus; Harm-Jan Westra; Lude Franke; Tonu Esko; Rakib-Uz Zaman; Tariqul Islam; Mahfuzar Rahman; John A. Baron; Muhammad G. Kibriya; Habibul Ahsan

A large fraction of human genes are regulated by genetic variation near the transcribed sequence (cis-eQTL, expression quantitative trait locus), and many cis-eQTLs have implications for human disease. Less is known regarding the effects of genetic variation on expression of distant genes (trans-eQTLs) and their biological mechanisms. In this work, we use genome-wide data on SNPs and array-based expression measures from mononuclear cells obtained from a population-based cohort of 1,799 Bangladeshi individuals to characterize cis- and trans-eQTLs and determine if observed trans-eQTL associations are mediated by expression of transcripts in cis with the SNPs showing trans-association, using Sobel tests of mediation. We observed 434 independent trans-eQTL associations at a false-discovery rate of 0.05, and 189 of these trans-eQTLs were also cis-eQTLs (enrichment P<0.0001). Among these 189 trans-eQTL associations, 39 were significantly attenuated after adjusting for a cis-mediator based on Sobel P<10-5. We attempted to replicate 21 of these mediation signals in two European cohorts, and while only 7 trans-eQTL associations were present in one or both cohorts, 6 showed evidence of cis-mediation. Analyses of simulated data show that complete mediation will be observed as partial mediation in the presence of mediator measurement error or imperfect LD between measured and causal variants. Our data demonstrates that trans-associations can become significantly stronger or switch directions after adjusting for a potential mediator. Using simulated data, we demonstrate that this phenomenon is expected in the presence of strong cis-trans confounding and when the measured cis-transcript is correlated with the true (unmeasured) mediator. In conclusion, by applying mediation analysis to eQTL data, we show that a substantial fraction of observed trans-eQTL associations can be explained by cis-mediation. Future studies should focus on understanding the mechanisms underlying widespread cis-mediation and their relevance to disease biology, as well as using mediation analysis to improve eQTL discovery.


Toxicology and Applied Pharmacology | 2014

Interaction between arsenic exposure from drinking water and genetic susceptibility in carotid intima-media thickness in Bangladesh

Fen Wu; Farzana Jasmine; Muhammad G. Kibriya; Mengling Liu; Xin Cheng; Faruque Parvez; Rachelle Paul-Brutus; Tariqul Islam; Rina Rani Paul; Golam Sarwar; Alauddin Ahmed; Jieying Jiang; Vesna Slavkovich; Tatjana Rundek; Ryan T. Demmer; Moïse Desvarieux; Habibul Ahsan; Yu Chen

Epidemiologic studies that evaluated genetic susceptibility for the effects of arsenic exposure from drinking water on subclinical atherosclerosis are limited. We conducted a cross-sectional study of 1078 participants randomly selected from the Health Effects of Arsenic Longitudinal Study in Bangladesh to evaluate whether the association between arsenic exposure and carotid artery intima-media thickness (cIMT) differs by 207 single-nucleotide polymorphisms (SNPs) in 18 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Although not statistically significant after correcting for multiple testing, nine SNPs in APOE, AS3MT, PNP, and TNF genes had a nominally statistically significant interaction with well-water arsenic in cIMT. For instance, the joint presence of a higher level of well-water arsenic (≥ 40.4 μg/L) and the GG genotype of AS3MT rs3740392 was associated with a difference of 40.9 μm (95% CI = 14.4, 67.5) in cIMT, much greater than the difference of cIMT associated with the genotype alone (β = -5.1 μm, 95% CI = -31.6, 21.3) or arsenic exposure alone (β = 7.2 μm, 95% CI = -3.1, 17.5). The pattern and magnitude of the interactions were similar when urinary arsenic was used as the exposure variable. Additionally, the at-risk genotypes of the AS3MT SNPs were positively related to the proportion of monomethylarsonic acid (MMA) in urine, which is indicative of arsenic methylation capacity. The findings provide novel evidence that genetic variants related to arsenic metabolism may play an important role in arsenic-induced subclinical atherosclerosis. Future replication studies in diverse populations are needed to confirm the findings.


Journal of Medical Genetics | 2014

Genome-wide association study of smoking behaviours among Bangladeshi adults

Maria Argos; Lin Tong; Brandon L. Pierce; Muhammad Rakibuz-Zaman; Alauddin Ahmed; Tariqul Islam; Mahfuzar Rahman; Rachelle Paul-Brutus; Ronald Rahaman; Shantanu Roy; Farzana Jasmine; Muhammad G. Kibriya; Habibul Ahsan

Background The high prevalence of tobacco use in some developing nations, including Bangladesh, poses several public health challenges for these populations. Smoking behaviour is determined by genetic and environmental factors; however, the genetic determinants of smoking behaviour have not been previously examined in a Bangladeshi or South Asian population. We performed a genome-wide association study (GWAS) of tobacco smoking behaviour among a population-based sample of 5354 (2035 ever smokers and 3319 never smokers) men and women in Bangladesh. Methods Genome-wide association analyses were conducted for smoking initiation (ever vs never smokers), smoking quantity (cigarettes per day), age of smoking initiation, and smoking cessation (former vs current smokers). Sex-stratified associations were performed for smoking initiation. Results We observed associations for smoking initiation in the SLC39A11 region at 17q21.31 (rs2567519, p=1.33×10−7) among men and in the SLCO3A1 region at 15q26 (rs12912184, p=9.32×10−8) among women. Conclusions These findings suggest possible underlying mechanisms related to solute carrier transporter genes, which transport neurotransmitters, nutrients, heavy metals and other substrates into cells, for smoking initiation in a South Asian population in a sex-specific pattern. Genetic markers could have potential translational implications for the prevention or treatment of tobacco use and addiction in South Asian populations and warrant further exploration.


Environmental Health Perspectives | 2015

Interaction between arsenic exposure from drinking water and genetic polymorphisms on cardiovascular disease in Bangladesh: a prospective case-cohort study.

Fen Wu; Farzana Jasmine; Muhammad G. Kibriya; Mengling Liu; Xin Cheng; Faruque Parvez; Tariqul Islam; Alauddin Ahmed; Muhammad Rakibuz-Zaman; Jieying Jiang; Shantanu Roy; Rachelle Paul-Brutus; Vesna Slavkovich; Diane Levy; Tyler J. VanderWeele; Brandon L. Pierce; Joseph H. Graziano; Habibul Ahsan; Yu Chen

Background: Epidemiologic data on genetic susceptibility to cardiovascular effects of arsenic exposure from drinking water are limited. Objective: We investigated whether the association between well-water arsenic and cardiovascular disease (CVD) differed by 170 single nucleotide polymorphisms (SNPs) in 17 genes related to arsenic metabolism, oxidative stress, inflammation, and endothelial dysfunction. Method: We conducted a prospective case-cohort study nested in the Health Effects of Arsenic Longitudinal Study, with a random subcohort of 1,375 subjects and 447 incident fatal and nonfatal cases of CVD. Well-water arsenic was measured in 2000 at baseline. The CVD cases, 56 of which occurred in the subcohort, included 238 coronary heart disease cases, 165 stroke cases, and 44 deaths due to other CVD identified during follow-up from 2000 to 2012. Results: Of the 170 SNPs tested, multiplicative interactions between well-water arsenic and two SNPs, rs281432 in ICAM1 (padj = 0.0002) and rs3176867 in VCAM1 (padj = 0.035), were significant for CVD after adjustment for multiple testing. Compared with those with GC or CC genotype in rs281432 and lower well-water arsenic, the adjusted hazard ratio (aHR) for CVD was 1.82 (95% CI: 1.31, 2.54) for a 1-SD increase in well-water arsenic combined with the GG genotype, which was greater than expected given aHRs of 1.08 and 0.96 for separate effects of arsenic and the genotype alone, respectively. Similarly, the joint aHR for arsenic and the rs3176867 CC genotype was 1.34 (95% CI: 0.95, 1.87), greater than expected given aHRs for their separate effects of 1.02 and 0.84, respectively. Conclusions: Associations between CVD and arsenic exposure may be modified by genetic variants related to endothelial dysfunction. Citation: Wu F, Jasmine F, Kibriya MG, Liu M, Cheng X, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Jiang J, Roy S, Paul-Brutus R, Slavkovich V, Islam T, Levy D, VanderWeele TJ, Pierce BL, Graziano JH, Ahsan H, Chen Y. 2015. Interaction between arsenic exposure from drinking water and genetic polymorphisms on cardiovascular disease in Bangladesh: a prospective case-cohort study. Environ Health Perspect 123:451–457; http://dx.doi.org/10.1289/ehp.1307883


Toxicology and Applied Pharmacology | 2015

Gene–arsenic interaction in longitudinal changes of blood pressure: Findings from the Health Effects of Arsenic Longitudinal Study (HEALS) in Bangladesh

Shohreh F. Farzan; Margaret R. Karagas; Jieying Jiang; Fen Wu; Mengling Liu; Jonathan D. Newman; Farzana Jasmine; Muhammad G. Kibriya; Rachelle Paul-Brutus; Faruque Parvez; Maria Argos; Molly Scannell Bryan; Mahbub Eunus; Alauddin Ahmed; Tariqul Islam; Muhammad Rakibuz-Zaman; Rabiul Hasan; Golam Sarwar; Vesna Slavkovich; Joseph H. Graziano; Habibul Ahsan; Yu Chen

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide and mounting evidence indicates that toxicant exposures can profoundly impact on CVD risk. Epidemiologic studies have suggested that arsenic (As) exposure is positively related to increases in blood pressure (BP), a primary CVD risk factor. However, evidence of whether genetic susceptibility can modify the association between As and BP is lacking. In this study, we used mixed effect models adjusted for potential confounders to examine the interaction between As exposure from well water and potential genetic modifiers on longitudinal change in BP over approximately 7years of follow-up in 1137 subjects selected from the Health Effects of Arsenic Longitudinal Study (HEALS) cohort in Bangladesh. Genotyping was conducted for 235 SNPs in 18 genes related to As metabolism, oxidative stress and endothelial function. We observed interactions between 44 SNPs with well water As for one or more BP outcome measures (systolic, diastolic, or pulse pressure (PP)) over the course of follow-up. The interaction between CYBA rs3794624 and well water As on annual PP remained statistically significant after correction for multiple comparisons (FDR-adjusted p for interaction=0.05). Among individuals with the rs3794624 variant genotype, well water As was associated with a 2.23mmHg (95% CI: 1.14-3.32) greater annual increase in PP, while among those with the wild type, well water As was associated with a 0.13mmHg (95% CI: 0.02-0.23) greater annual increase in PP. Our results suggest that genetic variability may contribute to As-associated increases in BP over time.

Collaboration


Dive into the Rachelle Paul-Brutus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge