Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Richard S. Stolarski is active.

Publication


Featured researches published by Richard S. Stolarski.


Science | 1992

Measured Trends in Stratospheric Ozone

Richard S. Stolarski; Rumen D. Bojkov; Lane Bishop; C. Zerefos; Johannes Staehelin; Joseph M. Zawodny

Recent findings, based on both ground-based and satellite measurements, have established that there has been an apparent downward trend in the total column amount of ozone over mid-latitude areas of the Northern Hemisphere in all seasons. Measurements of the altitude profile of the change in the ozone concentration have established that decreases are taking place in the lower stratosphere in the region of highest ozone concentration. Analysis of updated ozone records, through March of 1991, including 29 stations in the former Soviet Union, and analysis of independently calibrated satellite data records from the Total Ozone Mapping Spectrometer and Stratospheric Aerosol and Gas Experiment instruments confirm many of the findings originally derived from the Dobson record concerning northern midlatitude changes in ozone. The data from many instruments now provide a fairly consistent picture of the change that has occurred in stratospheric ozone levels.


Journal of Geophysical Research | 2006

Assessment of temperature, trace species, and ozone in chemistry-climate model simulations of the recent past

Veronika Eyring; Neal Butchart; Darryn W. Waugh; Hideharu Akiyoshi; John Austin; Slimane Bekki; G. E. Bodeker; B. A. Boville; C. Brühl; M. P. Chipperfield; Eugene C. Cordero; Martin Dameris; Makoto Deushi; Vitali E. Fioletov; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Volker Grewe; L. Jourdain; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Marion Marchand; Daniel R. Marsh; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; Steven Pawson; G. Pitari

Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.


Journal of Geophysical Research | 2002

Climate forcings in Goddard Institute for Space Studies SI2000 simulations

James E. Hansen; Makiko Sato; Larissa Nazarenko; Reto Ruedy; A. Lacis; D. Koch; Ina Tegen; Timothy M. Hall; Drew T. Shindell; B. D. Santer; Peter H. Stone; T. Novakov; Larry W. Thomason; R. H. J. Wang; Yuhang Wang; Daniel J. Jacob; S. M. Hollandsworth; L. Bishop; Jennifer A. Logan; Anne M. Thompson; Richard S. Stolarski; Judith Lean; R. Willson; Sydney Levitus; John I. Antonov; Nick Rayner; D. E. Parker; John R. Christy

[1] We define the radiative forcings used in climate simulations with the SI2000 version of the Goddard Institute for Space Studies (GISS) global climate model. These include temporal variations of well-mixed greenhouse gases, stratospheric aerosols, solar irradiance, ozone, stratospheric water vapor, and tropospheric aerosols. Our illustrations focus on the period 1951–2050, but we make the full data sets available for those forcings for which we have earlier data. We illustrate the global response to these forcings for the SI2000 model with specified sea surface temperature and with a simple Q-flux ocean, thus helping to characterize the efficacy of each forcing. The model yields good agreement with observed global temperature change and heat storage in the ocean. This agreement does not yield an improved assessment of climate sensitivity or a confirmation of the net climate forcing because of possible compensations with opposite changes of these quantities. Nevertheless, the results imply that observed global temperature change during the past 50 years is primarily a response to radiative forcings. It is also inferred that the planet is now out of radiation balance by 0.5 to 1 W/m 2 and that additional global warming of about 0.5� C is already ‘‘in the pipeline.’’ INDEX TERMS: 1620 Global Change: Climate dynamics (3309); 1635 Global Change: Oceans (4203); 1650 Global Change: Solar variability;


Science | 1993

Record Low Global Ozone in 1992

James F. Gleason; Pawan K. Bhartia; Jay R. Herman; Richard D. McPeters; Paul A. Newman; Richard S. Stolarski; Lawrence E. Flynn; Gordon Labow; D. Larko; C. Seftor; C. Wellemeyer; W. D. Komhyr; Alvin J. Miller; W. Planet

The 1992 global average total ozone, measured by the Total Ozone Mapping Spectrometer (TOMS) on the Nimbus-7 satellite, was 2 to 3 percent lower than any earlier year observed by TOMS (1979 to 1991). Ozone amounts were low in a wide range of latitudes in both the Northern and Southern hemispheres, and the largest decreases were in the regions from 10�S to 20�S and 100N to 60�N. Global ozone in 1992 is at least 1.5 percent lower than would be predicted by a statistical model that includes a linear trend and accounts for solar cycle variation and the quasi-biennial oscillation. These results are confirmed by comparisons with data from other ozone monitoring instruments: the SBUV/2 instrument on the NOAA-11 satellite, the TOMS instrument on the Russian Meteor-3 satellite, the World Standard Dobson Instrument 83, and a collection of 22 ground-based Dobson instruments.


Journal of Geophysical Research | 2007

Multimodel projections of stratospheric ozone in the 21st century

Veronika Eyring; Darryn W. Waugh; G. E. Bodeker; Eugene C. Cordero; Hideharu Akiyoshi; John Austin; S. R. Beagley; B. A. Boville; Peter Braesicke; C. Brühl; Neal Butchart; M. P. Chipperfield; Martin Dameris; Rudolf Deckert; Makoto Deushi; S. M. Frith; Rolando R. Garcia; Andrew Gettelman; Marco A. Giorgetta; Douglas E. Kinnison; E. Mancini; Elisa Manzini; Daniel R. Marsh; Sigrun Matthes; Tatsuya Nagashima; Paul A. Newman; J. E. Nielsen; S. Pawson; G. Pitari; David A. Plummer

[1] Simulations from eleven coupled chemistry-climate models (CCMs) employing nearly identical forcings have been used to project the evolution of stratospheric ozone throughout the 21st century. The model-to-model agreement in projected temperature trends is good, and all CCMs predict continued, global mean cooling of the stratosphere over the next 5 decades, increasing from around 0.25 K/decade at 50 hPa to around 1 K/ decade at 1 hPa under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. In general, the simulated ozone evolution is mainly determined by decreases in halogen concentrations and continued cooling of the global stratosphere due to increases in greenhouse gases (GHGs). Column ozone is projected to increase as stratospheric halogen concentrations return to 1980s levels. Because of ozone increases in the middle and upper stratosphere due to GHGinduced cooling, total ozone averaged over midlatitudes, outside the polar regions, and globally, is projected to increase to 1980 values between 2035 and 2050 and before lowerstratospheric halogen amounts decrease to 1980 values. In the polar regions the CCMs simulate small temperature trends in the first and second half of the 21st century in midwinter. Differences in stratospheric inorganic chlorine (Cly) among the CCMs are key to diagnosing the intermodel differences in simulated ozone recovery, in particular in the Antarctic. It is found that there are substantial quantitative differences in the simulated Cly, with the October mean Antarctic Cly peak value varying from less than 2 ppb to over 3.5 ppb in the CCMs, and the date at which the Cly returns to 1980 values varying from before 2030 to after 2050. There is a similar variation in the timing of recovery of Antarctic springtime column ozone back to 1980 values. As most models underestimate peak Clynear 2000, ozone recovery in the Antarctic could occur even later, between 2060 and 2070. In the Arctic the column ozone increase in spring does not follow halogen decreases as closely as in the Antarctic, reaching 1980 values before Arctic halogen amounts decrease


Geophysical Research Letters | 1997

Anomalously low ozone over the Arctic

Paul A. Newman; James F. Gleason; Richard D. McPeters; Richard S. Stolarski

Total ozone observations from the Total Ozone Mapping Spectrometer (TOMS) instruments during March 1997 reveal an extensive region of low column densities in the Arctic region centered near the north pole. Values were below 250 Dobson units for nearly a two week period during this period, and were correlated with the position of the northern lower stratospheric polar vortex. The March 1997 average total ozone column densities were more than 30% lower than the average of column densities observed during the 1979–1982 March period.


Journal of Geophysical Research | 1991

A new self-calibration method applied to TOMS and SBUV backscattered ultraviolet data to determine long-term global ozone change

Jay R. Herman; R. Hudson; Richard D. McPeters; Richard S. Stolarski; Z. Ahmad; X.-Y. Gu; S. Taylor; C. Wellemeyer

The currently archived (1989) total ozone mapping spectrometer (TOMS) and solar backscattered ultraviolet (SBUV) total ozone data (version 5) show a global average decrease of about 9.0% from November 1978 to November 1988. This large decrease disagrees with an approximate 3.5% decrease estimated from the ground-based Dobson network. The primary source of disagreement was found to arise from an overestimate of reflectivity change and its incorrect wavelengths dependence for the diffuser plate used when measuring solar irradiance. Both of these factors have led to an overestimate of the rate of atmospheric ozone depletion by SBUV and TOMS. For total ozone measured by TOMS, a means has been found to use the measured radiance-irradiance ratio from several wavelengths pairs to construct an internally self consistent calibration. The method uses the wavelength dependence of the sensitivity to calibration errors and the requirement that albedo ratios for each wavelength pair yield the same total ozone amounts. Smaller errors in determining spacecraft attitude, synchronization problems with the photon counting electronics, and sea glint contamination of boundary reflectivity data have been corrected or minimized. New climatological low-ozone profiles have been incorporated into the TOMS algorithm that are appropriate for Antarctic ozone hole conditions and other low ozone cases. The combined corrections have led to a new determination of the global average total ozone trend (version 6) as a 2.9±1.3% decrease over 11 years (October 1978 to November 1989). Version 6 data are shown to be in agreement within error limits with the average of 39 ground-based Dobson stations and with the world standard Dobson spectrometer 83 at Mauna Loa, Hawaii. The global average ozone trend from version 6 data shows the presence of varying short-period trends (1979 to 1983, −0.33%/yr; 1983 to 1986, −0.91% yr, and 1986 to 1990, +0.16%/yr) that are partially masked in the original version 5 trends.


Journal of Geophysical Research | 2008

Coupled chemistry climate model simulations of the solar cycle in ozone and temperature

John Austin; K. Tourpali; E. Rozanov; Hideharu Akiyoshi; Slimane Bekki; G. E. Bodeker; C. Brühl; Neal Butchart; M. P. Chipperfield; Makoto Deushi; V. I. Fomichev; Marco A. Giorgetta; Liz Gray; Kunihiko Kodera; François Lott; Elisa Manzini; Daniel R. Marsh; Katja Matthes; Tatsuya Nagashima; K. Shibata; Richard S. Stolarski; H. Struthers; W. Tian

The 11-year solar cycles in ozone and temperature are examined using newsimulations of coupled chemistry climate models. The results show a secondary maximumin stratospheric tropical ozone, in agreement with satellite observations and in contrastwith most previously published simulations. The mean model response varies by upto about 2.5% in ozone and 0.8 K in temperature during a typical solar cycle, at the lowerend of the observed ranges of peak responses. Neither the upper atmospheric effectsof energetic particles nor the presence of the quasi biennial oscillation is necessaryto simulate the lower stratospheric response in the observed low latitude ozoneconcentration. Comparisons are also made between model simulations and observed totalcolumn ozone. As in previous studies, the model simulations agree well with observations.For those models which cover the full temporal range 1960–2005, the ozone solarsignal below 50 hPa changes substantially from the first two solar cycles to the last twosolar cycles. Further investigation suggests that this difference is due to an aliasingbetween the sea surface temperatures and the solar cycle during the first part of the period.The relationship between these results and the overall structure in the tropical solarozone response is discussed. Further understanding of solar processes requiresimprovement in the observations of the vertically varying and column integrated ozone.


Journal of Geophysical Research | 1995

Interhemispheric differences in springtime production of HCl and ClONO2 in the polar vortices

Anne R. Douglass; Mark R. Schoeberl; Richard S. Stolarski; J. W. Waters; J. M. Russell; A. E. Roche; S. T. Massie

UARS observations of O3 and ClO (Microwave Limb Sounder), ClONO2 and HNO3 (Cryogenic Array Etalon Spectrometer), NO, NO2, and HCl (Halogen Occultation Experiment), and model calculations are used to produce an exposition of the different processes through which the reservoir gases ClONO2 and HCl are reformed at the end of the polar winter. Comparison of the observations within the polar vortices shows that HCl increases more rapidly in the Antarctic vortex in spring than in the Arctic vortex. Model analysis shows that this occurs because the O3 concentrations in the southern vortex fall well below those in the northern vortex. The Cl/ClO fraction calculated for the southern hemisphere is therefore up to 30 times higher, leading to rapid HCl formation by Cl + CH4. The concentrations of NO observed by HALOE are substantially lower for the northern hemisphere than for the southern hemisphere, even for similar values of the concentration of HNO3 and the production of NOX from HNO3 through photolysis and reaction with OH. This is consistent with the dependence of the NO/NOX ratio on the O3 concentration, i.e., the daytime production rate of NO2 via NO + O3 is reduced, leading to higher NO in the southern hemisphere. This higher concentration of NO also contributes to the rapid HCl increase as Cl production from ClO + NO is enhanced.


Journal of the Atmospheric Sciences | 2006

Trends in Stratospheric Ozone: Lessons Learned from a 3D Chemical Transport Model

Richard S. Stolarski; Anne R. Douglass; Stephen D. Steenrod; Steven Pawson

Abstract Stratospheric ozone is affected by external factors such as chlorofluorcarbons (CFCs), volcanoes, and the 11-yr solar cycle variation of ultraviolet radiation. Dynamical variability due to the quasi-biennial oscillation and other factors also contribute to stratospheric ozone variability. A research focus during the past two decades has been to quantify the downward trend in ozone due to the increase in industrially produced CFCs. During the coming decades research will focus on detection and attribution of the expected recovery of ozone as the CFCs are slowly removed from the atmosphere. A chemical transport model (CTM) has been used to simulate stratospheric composition for the past 30 yr and the next 20 yr using 50 yr of winds and temperatures from a general circulation model (GCM). The simulation includes the solar cycle in ultraviolet radiation, a representation of aerosol surface areas based on observations including volcanic perturbations from El Chichon in 1982 and Pinatubo in 1991, and t...

Collaboration


Dive into the Richard S. Stolarski's collaboration.

Top Co-Authors

Avatar

Anne R. Douglass

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Paul A. Newman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Mark R. Schoeberl

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Pawson

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles H. Jackman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

Luke D. Oman

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. E. Nielsen

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge