Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ryan J. Giuliano is active.

Publication


Featured researches published by Ryan J. Giuliano.


Frontiers in Psychology | 2011

Native Experience with a Tone Language Enhances Pitch Discrimination and the Timing of Neural Responses to Pitch Change

Ryan J. Giuliano; Peter Q. Pfordresher; Emily M. Stanley; Shalini Narayana; Nicole Y.Y. Wicha

Native tone language experience has been linked with alterations in the production and perception of pitch in language, as well as with the brain response to linguistic and non-linguistic tones. Here we use two experiments to address whether these changes apply to the discrimination of simple pitch changes and pitch intervals. Event related potentials (ERPs) were recorded from native Mandarin speakers and a control group during a same/different task with pairs of pure tones differing only in pitch height, and with pure tone pairs differing only in interval distance. Behaviorally, Mandarin speakers were more accurate than controls at detecting both pitch and interval changes, showing a sensitivity to small pitch changes and interval distances that was absent in the control group. Converging evidence from ERPs obtained during the same tasks revealed an earlier response to change relative to no-change trials in Mandarin speakers, as well as earlier differentiation of trials by change direction relative to controls. These findings illustrate the cross-domain influence of language experience on the perception of pitch, suggesting that the native use of tonal pitch contours in language leads to a general enhancement in the acuity of pitch representations.


Biological Psychology | 2015

Growth models of dyadic synchrony and mother-child vagal tone in the context of parenting at-risk.

Ryan J. Giuliano; Elizabeth A. Skowron; Elliot T. Berkman

We used multilevel modeling to examine dynamic changes in respiratory sinus arrhythmia (RSA) and observer-coded interactive synchrony for mother-child dyads engaged in a laboratory interaction, to characterize parenting-at-risk. Seventy-nine preschooler-mother dyads including a subset with documented child maltreatment (CM; n=43) were observed completing a joint puzzle task while physiological measures were recorded. Dyads led by CM mothers showed decreases in positive synchrony over time, whereas no variation was observed in non-CM dyads. Growth models of maternal RSA indicated that mothers who maintained high levels of positive interactive synchrony with their child evidenced greater RSA reactivity, characterized by an initial withdrawal followed by augmentation as the task progressed, after accounting for CM group status. These results help to clarify patterns of RSA responding in the context of caregiver-child interactions, and demonstrate the importance of modeling dynamic changes in physiology over time in order to better understanding biological correlates of parenting-at-risk.


Journal of Cognitive Neuroscience | 2014

Early auditory evoked potential is modulated by selective attention and related to individual differences in visual working memory capacity

Ryan J. Giuliano; Christina M. Karns; Helen J. Neville; Steven A. Hillyard

A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individuals capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.


Developmental Cognitive Neuroscience | 2015

Auditory attention in childhood and adolescence: An event-related potential study of spatial selective attention to one of two simultaneous stories.

Christina M. Karns; Elif Isbell; Ryan J. Giuliano; Helen J. Neville

Highlights • We measured auditory ERPs in children ages 3–16 years using a naturalistic dichotic listening task.• ERP morphology differed for nonlinguistic versus linguistic probes in attended and unattended stories.• Maturational changes were different for nonlinguistic versus linguistic probes.• Attention modulated the amplitude of early-latency ERPs and invoked later sustained processes.• Development of attentional processes was not uniform for different probe types.


Brain Research | 2010

Why the White Bear is Still There: Electrophysiological Evidence for Ironic Semantic Activation during Thought Suppression

Ryan J. Giuliano; Nicole Y.Y. Wicha

Much research has focused on the paradoxical effects of thought suppression, leading to the viewpoint that increases in unwanted thoughts are due to an ironic monitoring process that increases the activation of the very thoughts one is trying to rid from consciousness. However, it remains unclear from behavioral findings whether suppressed thoughts become more accessible during the act of suppression. In the current study, event-related potentials were recorded while participants suppressed or expressed thoughts of a focus word during a simple lexical decision task. Modulations in the N400 component reported here demonstrate the paradoxical effects occurring at the semantic level during suppression, as well as some evidence for the rebound effect after suppression periods. Interestingly, semantic activation was greater for focus words during suppression than expression, despite differences in the N1 window suggesting that expression elicited greater perceptual processing than suppression. Results provide electrophysiological evidence for the Ironic Process model and support recent claims of asymmetric network activation during thought suppression.


Drug and Alcohol Dependence | 2016

Intersections between cardiac physiology, emotion regulation and interpersonal warmth in preschoolers: implications for drug abuse prevention from translational neuroscience

Caron A. C. Clark; Elizabeth A. Skowron; Ryan J. Giuliano; Philip A. Fisher

BACKGROUND Early childhood is characterized by dramatic gains in emotion regulation skills that support social adjustment and mental health. Understanding the physiological substrates of healthy emotion regulation may offer new directions for altering trajectories toward initiation and escalation of substance abuse. Here, we describe the intersections between parasympathetic and sympathetic tone, emotion regulation and prosocial behavior in a high-risk sample of preschoolers. METHOD Fifty-two 3-6 year old children completed an assessment of attention regulation in response to affective stimuli. Cardiac respiratory sinus arrhythmia, an index of parasympathetic tone, and pre-ejection period, a marker of sympathetic activation, were recorded at rest and while children engaged in social interactions with their mothers and an unfamiliar research assistant. Mothers reported on childrens emotional reactivity and prosocial behavior. RESULTS Controlling for age and psychosocial risk, higher parasympathetic tone predicted better attention regulation in response to angry emotion and higher levels of prosocial behavior, whereas a reciprocal pattern of higher parasympathetic tone and lower sympathetic arousal predicted better attention in response to positive emotion and lower emotional reactivity. Children exposed to fewer risk factors and higher levels of maternal warmth were more able to sustain a high level of parasympathetic tone during interaction episodes. CONCLUSIONS Findings suggest that autonomic measures represent biomarkers for socio-emotional competence in young children. They also point to the importance of early experiences in the establishment of physiological regulation and the promise of family-based intervention to promote healthy emotion regulation and prevent substance dependence in high-risk populations.


Psychophysiology | 2017

Resting sympathetic arousal moderates the association between parasympathetic reactivity and working memory performance in adults reporting high levels of life stress

Ryan J. Giuliano; Lisa M. Gatzke-Kopp; Leslie E. Roos; Elizabeth A. Skowron

The neurovisceral integration model stipulates that autonomic function plays a critical role in the regulation of higher-order cognitive processes, yet most work to date has examined parasympathetic function in isolation from sympathetic function. Furthermore, the majority of work has been conducted on normative samples, which typically demonstrate parasympathetic withdrawal to increase arousal needed to complete cognitive tasks. Little is known about how autonomic regulation supports cognitive function in populations exposed to high levels of stress, which is critical given that chronic stress exposure alters autonomic function. To address this, we sought to characterize how parasympathetic (high-frequency heart rate variability, HF-HRV) and sympathetic (preejection period, PEP) measures of cardiac function contribute to individual differences in working memory (WM) capacity in a sample of high-risk women. HF-HRV and PEP were measured at rest and during a visual change detection measure of WM. Multilevel modeling was used to examine within-person fluctuations in WM performance throughout the task concurrently with HF-HRV and PEP, as well as between-person differences as a function of resting HF-HRV and PEP levels. Results indicate that resting PEP moderated the association between HF-HRV reactivity and WM capacity. Increases in WM capacity across the task were associated with increases in parasympathetic activity, but only among individuals with longer resting PEP (lower sympathetic arousal). Follow-up analyses showed that shorter resting PEP was associated with greater cumulative risk exposure. These results support the autonomic space framework, in that the relationship between behavior and parasympathetic function appears dependent on resting sympathetic activation.


Developmental Psychology | 2018

Effects of early adversity on neural mechanisms of distractor suppression are mediated by sympathetic nervous system activity in preschool-aged children.

Ryan J. Giuliano; Christina M. Karns; Leslie E. Roos; Theodore A. Bell; Seth Petersen; Elizabeth A. Skowron; Helen J. Neville; Eric Pakulak

Multiple theoretical frameworks posit that interactions between the autonomic nervous system and higher-order neural networks are crucial for cognitive regulation. However, few studies have simultaneously examined autonomic physiology and brain activity during cognitive tasks. Such research is promising for understanding how early adversity impacts neurocognitive development in children, given that stress experienced early in life impacts both autonomic function and regulatory behaviors. We recorded event-related potentials (ERPs) as a neural measure of auditory selective attention, and cardiovascular measures of high-frequency heart rate variability (HF-HRV) and preejection period (PEP), in 105 3–5-year-old children with varying degrees of socioeconomic risk. First, we replicated a previous study from our lab: Increased socioeconomic risk was associated with larger ERP amplitudes elicited by distracting sounds. Next, we tested whether PEP and HF-HRV (at rest and during the task) were associated with the distractor ERP response, and found that a physiological profile marked by heightened sympathetic nervous system activity, indexed by shorter PEP, was associated with better ERP suppression of distractor sounds in lower SES children. Finally, we found that PEP mediated the relationship between socioeconomic risk and larger ERP responses to distractor sounds. In line with similar reports, these results suggest that for lower SES children, there is a potential biological cost of achieving better cognitive performance, seen here as increased cardiovascular arousal both at rest and in response to task demands.


Psychoneuroendocrinology | 2017

Validation of Autonomic and Endocrine Reactivity to a Laboratory Stressor in Young Children

Leslie E. Roos; Ryan J. Giuliano; Kathryn G. Beauchamp; Megan R. Gunnar; Brigette Amidon; Philip A. Fisher

The validation of laboratory paradigms that reliably induce a stress response [including hypothalamic-pituitary-adrenal (HPA) axis and autonomic nervous system (ANS) activation], is critical for understanding how childrens stress-response systems support emotional and cognitive function. Early childhood research to date is markedly limited, given the difficulty in establishing paradigms that reliably induce a cortisol response. Furthermore, research to date has not included a control condition or examined concurrent ANS reactivity. We addressed these limitations by characterizing the extent to which a modified matching task stressor paradigm induces HPA and ANS activation, beyond a closely matched control condition. Modifications include an unfamiliar and unfriendly assessor to increase the stressful nature of the task. Results validate the matching task as a laboratory stressor, with significant differences in HPA and ANS responsivity between conditions. The Stressor group exhibited a cortisol increase post-stressor, while the Control group was stable over time. Children in both conditions exhibited reduced parasympathetic activity to the first-half of the task, but in the second-half, only children in the Stressor condition, who were experiencing exaggerated signals of failure, exhibited further parasympathetic decline. The Stressor condition induced higher sympathetic activity (versus Control) throughout the task, with exaggerated second-half differences. Within the Stressor condition, responsivity was convergent across systems, with greater cortisol reactivity correlated with the magnitude of parasympathetic withdrawal and sympathetic engagement. Future research employing the matching task will facilitate understanding the role of HPA and ANS function in development.


Psychophysiology | 2018

Parasympathetic and sympathetic activity are associated with individual differences in neural indices of selective attention in adults

Ryan J. Giuliano; Christina M. Karns; Theodore A. Bell; Seth Petersen; Elizabeth A. Skowron; Helen J. Neville; Eric Pakulak

Multiple theoretical frameworks posit that interactions between the autonomic nervous system and higher-order neural networks are crucial for cognitive and emotion regulation. However, few studies have directly examined the relationship between measures of autonomic physiology and brain activity during cognitive tasks, and fewer studies have examined both the parasympathetic and sympathetic autonomic branches when doing so. Here, 93 adults completed an ERP auditory selective attention task concurrently with measures of parasympathetic activity (high-frequency heart rate variability; HF-HRV) and sympathetic activity (preejection period; PEP). We focus on the well-studied N1 ERP component to test for associations with baseline values of HF-HRV and PEP. Individuals with higher resting HF-HRV and shorter resting PEP showed larger effects of selective attention on their ERPs. Follow-up regression models demonstrated that HF-HRV and PEP accounted for unique variance in selective attention effects on N1 mean amplitude. These results are consistent with the neurovisceral integration model, such that greater parasympathetic activity is a marker of increased selective attention, as well as other theoretical models that emphasize the role of heightened sympathetic activity in more efficient attention-related processing. The present findings highlight the importance of autonomic physiology in the study of individual differences in neurocognitive function and, given the foundational role of selective attention across cognitive domains, suggest that both parasympathetic and sympathetic activity may be key to understanding variability in brain function across a variety of cognitive tasks.

Collaboration


Dive into the Ryan J. Giuliano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicole Y.Y. Wicha

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge