Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S. Fonti is active.

Publication


Featured researches published by S. Fonti.


Nature | 2004

Perennial water ice identified in the south polar cap of Mars.

Jean-Pierre Bibring; Y. Langevin; F. Poulet; A. Gendrin; B. Gondet; Michel Berthé; Alain Soufflot; P. Drossart; M. Combes; G. Belluci; V.I. Moroz; N. Mangold; Bernard Schmitt; Stephane Erard; Olivier Forni; N. Manaud; G. Poulleau; Th. Encrenaz; Thierry Fouchet; Riccardo Melchiorri; F. Altieri; V. Formisano; G. Bonello; S. Fonti; F. Capaccioni; P. Cerroni; Angioletta Coradini; V. Kottsov; Nikolay Ignatiev; Dmitri Titov

The inventory of water and carbon dioxide reservoirs on Mars are important clues for understanding the geological, climatic and potentially exobiological evolution of the planet. From the early mapping observation of the permanent ice caps on the martian poles, the northern cap was believed to be mainly composed of water ice, whereas the southern cap was thought to be constituted of carbon dioxide ice. However, recent missions (NASA missions Mars Global Surveyor and Odyssey) have revealed surface structures, altimetry profiles, underlying buried hydrogen, and temperatures of the south polar regions that are thermodynamically consistent with a mixture of surface water ice and carbon dioxide. Here we present the first direct identification and mapping of both carbon dioxide and water ice in the martian high southern latitudes, at a resolution of 2 km, during the local summer, when the extent of the polar ice is at its minimum. We observe that this south polar cap contains perennial water ice in extended areas: as a small admixture to carbon dioxide in the bright regions; associated with dust, without carbon dioxide, at the edges of this bright cap; and, unexpectedly, in large areas tens of kilometres away from the bright cap.


Science | 2015

The organic-rich surface of comet 67P/Churyumov-Gerasimenko as seen by VIRTIS/Rosetta

F. Capaccioni; Angioletta Coradini; G. Filacchione; S. Erard; Gabriele Arnold; P. Drossart; M.C. De Sanctis; D. Bockelee-Morvan; M. T. Capria; F. Tosi; Cedric Leyrat; B. Schmitt; Eric Quirico; P. Cerroni; V. Mennella; A. Raponi; M. Ciarniello; T. B. McCord; L. V. Moroz; E. Palomba; E. Ammannito; M. A. Barucci; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; Robert W. Carlson; U. Carsenty; L. Colangeli

The VIRTIS (Visible, Infrared and Thermal Imaging Spectrometer) instrument on board the Rosetta spacecraft has provided evidence of carbon-bearing compounds on the nucleus of the comet 67P/Churyumov-Gerasimenko. The very low reflectance of the nucleus (normal albedo of 0.060 ± 0.003 at 0.55 micrometers), the spectral slopes in visible and infrared ranges (5 to 25 and 1.5 to 5% kÅ−1), and the broad absorption feature in the 2.9-to-3.6–micrometer range present across the entire illuminated surface are compatible with opaque minerals associated with nonvolatile organic macromolecular materials: a complex mixture of various types of carbon-hydrogen and/or oxygen-hydrogen chemical groups, with little contribution of nitrogen-hydrogen groups. In active areas, the changes in spectral slope and absorption feature width may suggest small amounts of water-ice. However, no ice-rich patches are observed, indicating a generally dehydrated nature for the surface currently illuminated by the Sun.


Nature | 2007

South-polar features on Venus similar to those near the north pole

Giuseppe Piccioni; P. Drossart; A. Sánchez-Lavega; R. Hueso; F. W. Taylor; Colin F. Wilson; D. Grassi; L. V. Zasova; Maria Luisa Moriconi; A. Adriani; Sebastien Lebonnois; Angioletta Coradini; B. Bezard; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus

Venus has no seasons, slow rotation and a very massive atmosphere, which is mainly carbon dioxide with clouds primarily of sulphuric acid droplets. Infrared observations by previous missions to Venus revealed a bright ‘dipole’ feature surrounded by a cold ‘collar’ at its north pole. The polar dipole is a ‘double-eye’ feature at the centre of a vast vortex that rotates around the pole, and is possibly associated with rapid downwelling. The polar cold collar is a wide, shallow river of cold air that circulates around the polar vortex. One outstanding question has been whether the global circulation was symmetric, such that a dipole feature existed at the south pole. Here we report observations of Venus’ south-polar region, where we have seen clouds with morphology much like those around the north pole, but rotating somewhat faster than the northern dipole. The vortex may extend down to the lower cloud layers that lie at about 50 km height and perhaps deeper. The spectroscopic properties of the clouds around the south pole are compatible with a sulphuric acid composition.


Nature | 2007

A dynamic upper atmosphere of Venus as revealed by VIRTIS on Venus Express

P. Drossart; Giuseppe Piccioni; J.-C. Gérard; Miguel Angel Lopez-Valverde; A. Sánchez-Lavega; L. V. Zasova; R. Hueso; F. W. Taylor; B. Bezard; A. Adriani; F. Angrilli; Gabriele Arnold; Kevin H. Baines; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; Robert W. Carlson; Angioletta Coradini; A. M. Di Lellis; Th. Encrenaz; Stephane Erard; S. Fonti; V. Formisano; T. Fouchet; Raphael F. Garcia; Rainer Haus; J. Helbert; Nikolay Ignatiev

The upper atmosphere of a planet is a transition region in which energy is transferred between the deeper atmosphere and outer space. Molecular emissions from the upper atmosphere (90–120 km altitude) of Venus can be used to investigate the energetics and to trace the circulation of this hitherto little-studied region. Previous spacecraft and ground-based observations of infrared emission from CO2, O2 and NO have established that photochemical and dynamic activity controls the structure of the upper atmosphere of Venus. These data, however, have left unresolved the precise altitude of the emission owing to a lack of data and of an adequate observing geometry. Here we report measurements of day-side CO2 non-local thermodynamic equilibrium emission at 4.3 µm, extending from 90 to 120 km altitude, and of night-side O2 emission extending from 95 to 100 km. The CO2 emission peak occurs at ∼115 km and varies with solar zenith angle over a range of ∼10 km. This confirms previous modelling, and permits the beginning of a systematic study of the variability of the emission. The O2 peak emission happens at 96 km ± 1 km, which is consistent with three-body recombination of oxygen atoms transported from the day side by a global thermospheric sub-solar to anti-solar circulation, as previously predicted.


Science | 2011

The Surface Composition and Temperature of Asteroid 21 Lutetia As Observed by Rosetta/VIRTIS

Angioletta Coradini; F. Capaccioni; S. Erard; Gabriele Arnold; M.C. De Sanctis; G. Filacchione; F. Tosi; M. A. Barucci; M. T. Capria; E. Ammannito; D. Grassi; Giuseppe Piccioni; S. Giuppi; G. Bellucci; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; Maria I. Blecka; D. Bockelee-Morvan; F. Carraro; R. Carlson; U. Carsenty; P. Cerroni; L. Colangeli; M. Combes; Michael R. Combi; J. Crovisier; P. Drossart; E. T. Encrenaz; C. Federico

A spacecraft flyby of an asteroid reveals a high-density body that is more like a planetesimal than a rubble pile. The Visible, InfraRed, and Thermal Imaging Spectrometer (VIRTIS) on Rosetta obtained hyperspectral images, spectral reflectance maps, and temperature maps of the asteroid 21 Lutetia. No absorption features, of either silicates or hydrated minerals, have been detected across the observed area in the spectral range from 0.4 to 3.5 micrometers. The surface temperature reaches a maximum value of 245 kelvin and correlates well with topographic features. The thermal inertia is in the range from 20 to 30 joules meter−2 kelvin−1 second−0.5, comparable to a lunarlike powdery regolith. Spectral signatures of surface alteration, resulting from space weathering, seem to be missing. Lutetia is likely a remnant of the primordial planetesimal population, unaltered by differentiation processes and composed of chondritic materials of enstatitic or carbonaceous origin, dominated by iron-poor minerals that have not suffered aqueous alteration.


Nature | 2016

Exposed water ice on the nucleus of comet 67P/Churyumov–Gerasimenko

G. Filacchione; M.C. De Sanctis; F. Capaccioni; A. Raponi; F. Tosi; M. Ciarniello; P. Cerroni; G. Piccioni; M. T. Capria; E. Palomba; G. Bellucci; Stephane Erard; Dominique Bockelee-Morvan; Cedric Leyrat; Gabriele Arnold; M. A. Barucci; M. Fulchignoni; B. Schmitt; Eric Quirico; R. Jaumann; K. Stephan; A. Longobardo; V. Mennella; A. Migliorini; E. Ammannito; J. Benkhoff; Jean-Pierre Bibring; A. Blanco; M. I. Blecka; R. Carlson

Although water vapour is the main species observed in the coma of comet 67P/Churyumov–Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov–Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov–Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.


Planetary and Space Science | 1998

The infrared optical constants of limestone particles and implications for the search of carbonates on Mars

V. Orofino; A. Blanco; S. Fonti; R. Proce; A. Rotundi

Abstract Theoretical studies and numerical models of the atmosphere and surface of Mars need the knowledge of the optical constants of candidate materials for Martian dust. Limestone, as a carbonate bearing material, is commonly considered a likely component particularly important for its links with the climate evolution and water resources on Mars. In this work we present the complex indices of refraction of submicron particles of limestone, derived from laboratory transmission spectra in the wavelength range 3.5–20 μm by means of the dispersion theory. The results are discussed and compared with the bulk optical constants of the same material already available in the literature. Since a comparison between the infrared spectrum of our dust sample of limestone (composed of more than 98% of calcium carbonate) and that of pure calcite particles shows no differences, we can consider the optical properties presented in this paper valid also for a collection of randomly oriented submicron calcite grains. The extinction and scattering efficiencies of limestone grains, calculated using our particulate optical constants, have been used as input parameters in a simple model of radiative transfer to compute synthetic spectra of the surface and the aerosol of Mars. The results clearly show that, for quantitative analyses concerning the abundance and composition of the different solid materials present on the surface and atmosphere, the physical status of the various dust components has to be taken into account. This means that any extrapolation in the use of the bulk optical constants to describe the optical behaviour of small particles and vice versa has to be checked a priori.


Astronomy and Astrophysics | 2016

Detection of exposed H2O ice on the nucleus of comet 67P/Churyumov-Gerasimenko

M. A. Barucci; G. Filacchione; S. Fornasier; A. Raponi; J. D. P. Deshapriya; F. Tosi; C. Feller; M. Ciarniello; H. Sierks; F. Capaccioni; Antoine Pommerol; M. Massironi; N. Oklay; F. Merlin; Jean-Baptiste Vincent; M. Fulchignoni; A. Guilbert-Lepoutre; D. Perna; M. T. Capria; P. H. Hasselmann; B. Rousseau; Cesare Barbieri; Dominique Bockelee-Morvan; P. L. Lamy; C. De Sanctis; R. Rodrigo; S. Erard; D. Koschny; C. Leyrat; Hans Rickman

Since the orbital insertion of the Rosetta spacecraft, comet 67P/Churyumov-Gerasimenko (67P/C-G) has been mapped by OSIRIS camera and VIRTIS spectro-imager, producing a huge quantity of images and spectra of the comet’s nucleus. The aim of this work is to search for the presence of H 2 O on the nucleus which, in general, appears very dark and rich in dehydrated organic material. After selecting images of the bright spots which could be good candidates to search for H 2 O ice, taken at high resolution by OSIRIS, we check for spectral cubes of the selected coordinates to identify these spots observed by VIRTIS. Methods. The selected OSIRIS images were processed with the OSIRIS standard pipeline and corrected for the illumination condi- tions for each pixel using the Lommel-Seeliger disk law. The spots with higher I/F were selected and then analysed spectrophotomet- rically and compared with the surrounding area. We selected 13 spots as good targets to be analysed by VIRTIS to search for the 2 μm absorption band of water ice in the VIRTIS spectral cubes. Results. Out of the 13 selected bright spots, eight of them present positive H 2 O ice detection on the VIRTIS data. A spectral analysis was performed and the approximate temperature of each spot was computed. The H 2 O ice content was confirmed by modeling the spectra with mixing (areal and intimate) of H 2 O ice and dark terrain, using Hapke’s radiative transfer modeling. We also present a detailed analysis of the detected spots.


Advances in Space Research | 1997

PFS:A FOURIER SPECTROMETER FOR THE STUDY OF MARTIAN ATMOSPHERE

V. Formisano; V.I. Moroz; F. Angrilli; G. Bianchini; E. Bussoletti; N. Cafaro; F. Capaccioni; M. T. Capria; P. Cerroni; G. Chionchio; L. Colangeli; Angioletta Coradini; A. M. Di Lellis; S. Fonti; R. Orfei; E. Palomba; Giuseppe Piccioni; Bortolino Saggin; A. Ekonomov; A. Grigorlev; V. Gnedykh; I. Khatuntsev; A. Kiselev; I.A. Matsygorin; B. Moshkin; V. Nechaev; Yu.V. Nikolsky; D. Patsaev; A. Russakov; D.V. Titov

The Planetary Fourier Spectrometer PFS has been designed for the study of the atmosphere and soil of Mars. PFS has two infrared channels: a long wavelength (LW) channel with range 250 - 2000 cm-’ and a short wavelength (SW) channel with range 2000 - 8333 cm-‘. The spectral resolution is 2 cm-‘. Both channels work simultaneously. The field of view is 2” which covers 10 km on the Martian surface being observed from the pericenter at 300 km. The signal to noise ratio is better than 100 in a range of particular scientific interest (at 650 cm-’ , for example). The built-in pointing device allows to study the atmosphere over extreme regions like Hellas Planitia or Olympus Mons.


SPIE's 1996 International Symposium on Optical Science, Engineering, and Instrumentation | 1996

VIRTIS: Visible Infrared Thermal Imaging Spectrometer for the Rosetta mission

Francis M. Reininger; Angioletta Coradini; F. Capaccioni; M. T. Capria; P. Cerroni; M.C. De Sanctis; G. Magni; P. Drossart; Maria Antonietta Barucci; Dominique Bockelee-Morvan; Jean-Michel Combes; Jacques Crovisier; Th. Encrenaz; Jean-Michel Reess; Alain Semery; Didier Tiphene; Gabriele Arnold; U. Carsenty; Harald Michaelis; S. Mottola; Gerhard Neukum; G. Peters; Ulrich Schade; F. W. Taylor; Simon B. Calcutt; Tim Vellacott; P. Venters; R.E.J. Watkins; G. Bellucci; Vittorio Formisano

The visible infrared thermal imaging spectrometer (VIRTIS) is one of the principal payloads to be launched in 2003 on ESAs Rosetta spacecraft. Its primary scientific objective s are to map the surface of the comet Wirtanen, monitor its temperature, and identify the solids and gaseous species on the nucleus and in the coma. VIRTIS will also collet data on two asteroids, one of which has been identified as Mimistrobell. The data is collected remotely using a mapping spectrometer co-boresighted with a high spectral resolution spectrometer. The mapper consists of a Shafer telescope matched to an Offner grating spectrometer capable of gathering high spatial, medium spectral resolution image cubes in the 0.25 to 5 micrometers waveband. The high spectral resolution spectrometer uses an echelle grating and a cross dispersing prism to achieve resolving powers of 1200 to 300 in the 1.9 to 5 micrometers band. Both sub-systems are passively cooled to 130 K and use two Sterling cycle coolers to enable two HgCdTe detector arrays to operate at 70 K. The mapper also uses a silicon back-side illuminated detector array to cover the ultra-violet to near-infrared optical band.

Collaboration


Dive into the S. Fonti's collaboration.

Top Co-Authors

Avatar

A. Blanco

University of Salento

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Colangeli

European Space Research and Technology Centre

View shared research outputs
Top Co-Authors

Avatar

E. Bussoletti

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge