Sandy S. C. Hung
University of Melbourne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sandy S. C. Hung.
Journal of Cell Biology | 2008
Elaine Sanij; Gretchen Poortinga; Kerith Sharkey; Sandy S. C. Hung; Timothy P. Holloway; Jaclyn Quin; Elysia Robb; Lee H. Wong; Walter G. Thomas; Victor Y. Stefanovsky; Tom Moss; Lawrence I. Rothblum; Katherine M. Hannan; Grant A. McArthur; Richard B. Pearson; Ross D. Hannan
In mammals, the mechanisms regulating the number of active copies of the ∼200 ribosomal RNA (rRNA) genes transcribed by RNA polymerase I are unclear. We demonstrate that depletion of the transcription factor upstream binding factor (UBF) leads to the stable and reversible methylation-independent silencing of rRNA genes by promoting histone H1–induced assembly of transcriptionally inactive chromatin. Chromatin remodeling is abrogated by the mutation of an extracellular signal-regulated kinase site within the high mobility group box 1 domain of UBF1, which is required for its ability to bend and loop DNA in vitro. Surprisingly, rRNA gene silencing does not reduce net rRNA synthesis as transcription from remaining active genes is increased. We also show that the active rRNA gene pool is not static but decreases during differentiation, correlating with diminished UBF expression. Thus, UBF1 levels regulate active rRNA gene chromatin during growth and differentiation.
Science Signaling | 2011
Joanna C. Chan; Katherine M. Hannan; Kim Riddell; Pui Yee Ng; Abigail Peck; Rachel S. Lee; Sandy S. C. Hung; Megan Victoria Astle; Megan J. Bywater; Meaghan Wall; Gretchen Poortinga; Katarzyna Jastrzebski; Karen E. Sheppard; Brian A. Hemmings; Michael N. Hall; Ricky W. Johnstone; Grant A. McArthur; Ross D. Hannan; Richard B. Pearson
In addition to promoting translation, AKT also stimulates protein synthesis and cell growth by enhancing ribosome biogenesis. Building the Building Blocks Ribosomes translate mRNA into protein, and the activity of signaling pathways that promote ribosome formation (or biogenesis) is often increased in cancer cells, which have high rates of protein synthesis and cell growth. Thus, each step of ribosome biogenesis can limit cell growth, including the synthesis of ribosomal RNA (rRNA), which encodes the RNA components of the ribosome. Chan et al. found that the kinase AKT, which is frequently activated in cancer cells and was previously implicated in promoting protein translation, also promotes rRNA synthesis. Cells with increased AKT activity showed increased rRNA abundance and more ribosomes. The transcription factor c-MYC is required for ribosome biogenesis, and the gene encoding c-MYC is frequently mutated in tumors. The ability of c-MYC to promote ribosome biogenesis and cell growth in a mouse model of lymphoma was attenuated by an AKT inhibitor. These results suggest that reducing ribosome biogenesis may in part underlie the therapeutic efficacy of anticancer drugs that target AKT signaling. Precise regulation of ribosome biogenesis is fundamental to maintain normal cell growth and proliferation, and accelerated ribosome biogenesis is associated with malignant transformation. Here, we show that the kinase AKT regulates ribosome biogenesis at multiple levels to promote ribosomal RNA (rRNA) synthesis. Transcription elongation by RNA polymerase I, which synthesizes rRNA, required continuous AKT-dependent signaling, an effect independent of AKT’s role in activating the translation-promoting complex mTORC1 (mammalian target of rapamycin complex 1). Sustained inhibition of AKT and mTORC1 cooperated to reduce rRNA synthesis and ribosome biogenesis by additionally limiting RNA polymerase I loading and pre-rRNA processing. In the absence of growth factors, constitutively active AKT increased synthesis of rRNA, ribosome biogenesis, and cell growth. Furthermore, AKT cooperated with the transcription factor c-MYC to synergistically activate rRNA synthesis and ribosome biogenesis, defining a network involving AKT, mTORC1, and c-MYC as a master controller of cell growth. Maximal activation of c-MYC–dependent rRNA synthesis in lymphoma cells required AKT activity. Moreover, inhibition of AKT-dependent rRNA transcription was associated with increased lymphoma cell death by apoptosis. These data indicate that decreased ribosome biogenesis is likely to be a fundamental component of the therapeutic response to AKT inhibitors in cancer.
Investigative Ophthalmology & Visual Science | 2016
Sandy S. C. Hung; Vicki Chrysostomou; Fan Li; Jeremiah K. H. Lim; Jiang-Hui Wang; Joseph E. Powell; Leilei Tu; Maciej Daniszewski; Camden Lo; Raymond C.B. Wong; Jonathan G. Crowston; Alice Pébay; Anna E. King; Bang V. Bui; Guei-Sheung Liu; Alex W. Hewitt
PURPOSE Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein (Cas) has recently been adapted to enable efficient editing of the mammalian genome, opening novel avenues for therapeutic intervention of inherited diseases. In seeking to disrupt yellow fluorescent protein (YFP) in a Thy1-YFP transgenic mouse, we assessed the feasibility of utilizing the adeno-associated virus 2 (AAV2) to deliver CRISPR/Cas for gene modification of retinal cells in vivo. METHODS Single guide RNA (sgRNA) plasmids were designed to target YFP, and after in vitro validation, selected guides were cloned into a dual AAV system. One AAV2 construct was used to deliver Streptococcus pyogenes Cas9 (SpCas9), and the other delivered sgRNA against YFP or LacZ (control) in the presence of mCherry. Five weeks after intravitreal injection, retinal function was determined using electroretinography, and CRISPR/Cas-mediated gene modifications were quantified in retinal flat mounts. RESULTS Adeno-associated virus 2-mediated in vivo delivery of SpCas9 with sgRNA targeting YFP significantly reduced the number of YFP fluorescent cells of the inner retina of our transgenic mouse model. Overall, we found an 84.0% (95% confidence interval [CI]: 81.8-86.9) reduction of YFP-positive cells in YFP-sgRNA-infected retinal cells compared to eyes treated with LacZ-sgRNA. Electroretinography profiling found no significant alteration in retinal function following AAV2-mediated delivery of CRISPR/Cas components compared to contralateral untreated eyes. CONCLUSIONS Thy1-YFP transgenic mice were used as a rapid quantifiable means to assess the efficacy of CRISPR/Cas-based retinal gene modification in vivo. We demonstrate that genomic modification of cells in the adult retina can be readily achieved by viral-mediated delivery of CRISPR/Cas.
Stem Cells International | 2016
Damián Hernández; Rodney E. Millard; Priyadharshini Sivakumaran; Raymond C.B. Wong; Duncan E. Crombie; Alex W. Hewitt; Helena Liang; Sandy S. C. Hung; Alice Pébay; Robert K. Shepherd; Gregory J. Dusting; Shiang Y. Lim
Background. Human induced pluripotent stem cells (iPSCs) are an attractive source of cardiomyocytes for cardiac repair and regeneration. In this study, we aim to determine whether acute electrical stimulation of human iPSCs can promote their differentiation to cardiomyocytes. Methods. Human iPSCs were differentiated to cardiac cells by forming embryoid bodies (EBs) for 5 days. EBs were then subjected to brief electrical stimulation and plated down for 14 days. Results. In iPS(Foreskin)-2 cell line, brief electrical stimulation at 65 mV/mm or 200 mV/mm for 5 min significantly increased the percentage of beating EBs present by day 14 after plating. Acute electrical stimulation also significantly increased the cardiac gene expression of ACTC1, TNNT2, MYH7, and MYL7. However, the cardiogenic effect of electrical stimulation was not reproducible in another iPS cell line, CERA007c6. Beating EBs from control and electrically stimulated groups expressed various cardiac-specific transcription factors and contractile muscle markers. Beating EBs were also shown to cycle calcium and were responsive to the chronotropic agents, isoproterenol and carbamylcholine, in a concentration-dependent manner. Conclusions. Our results demonstrate that brief electrical stimulation can promote cardiac differentiation of human iPS cells. The cardiogenic effect of brief electrical stimulation is dependent on the cell line used.
Stem Cells Translational Medicine | 2014
Yulan Piao; Sandy S. C. Hung; Shiang Y. Lim; Raymond C.B. Wong; Minoru S.H. Ko
Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration‐free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple‐to‐use, and cost‐effective method for generating integration‐free hiPS cells from keratinocytes. Our improved method using lipid‐mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte‐derived hiPS cells showed no integration of episomal vectors, expressed stem cell‐specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration‐free hiPS cells from keratinocytes.
Scientific Reports | 2016
Katherine P. Gill; Sandy S. C. Hung; Alexei A. Sharov; Camden Lo; Karina Needham; Grace E. Lidgerwood; Stacey Jackson; Duncan E. Crombie; Bryony A. Nayagam; Anthony L. Cook; Alex W. Hewitt; Alice Pébay; Raymond C.B. Wong
Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present a 45-day protocol that utilises magnetic activated cell sorting to generate enriched population of RGCs via stepwise retinal differentiation using hESCs. We performed an extensive characterization of these stem cell-derived RGCs by examining the gene and protein expressions of a panel of neural/RGC markers. Furthermore, whole transcriptome analysis demonstrated similarity of the hESC-derived RGCs to human adult RGCs. The enriched hESC-RGCs possess long axons, functional electrophysiological profiles and axonal transport of mitochondria, suggestive of maturity. In summary, this RGC differentiation protocol can generate an enriched population of functional RGCs from hESCs, allowing future studies on disease modeling of optic neuropathies and development of cell therapies.
Cellular Signalling | 2011
Katarzyna Jastrzebski; Katherine M. Hannan; Colin M. House; Sandy S. C. Hung; Richard B. Pearson; Ross D. Hannan
S6K1, a critical downstream substrate of mTORC1, has been implicated in regulating protein synthesis and a variety of processes that impinge upon cell growth and proliferation. While the role of the cytoplasmic p70(S6K1) isoform in the regulation of translation has been intensively studied, the targets and function of the nuclear p85(S6K1) isoform remain unclear. Therefore, we carried out a phospho-proteomic screen to identify novel p85(S6K1) substrates. Four novel putative p85(S6K1) substrates, GRP75, CCTβ, PGK1 and RACK1, and two mTORC1 substrates, ANXA4 and PSMA6 were identified, with diverse roles in chaperone function, ribosome maturation, metabolism, vesicle trafficking and the proteasome, respectively. The chaperonin subunit CCTβ was further investigated and the site of phosphorylation mapped to serine 260, a site located in the chaperonin apical domain. Consistent with this domain being involved in folding substrate interactions, we found that phosphorylation of serine 260 modulates chaperonin folding activity.
DNA Research | 2013
Sandy S. C. Hung; Raymond C.B. Wong; Alexei A. Sharov; Yuhki Nakatake; Hong Yu; Minoru S.H. Ko
Mouse embryonic stem (ES) cells are prototypical stem cells that remain undifferentiated in culture for long periods, yet maintain the ability to differentiate into essentially all cell types. Previously, we have reported that ES cells oscillate between two distinct states, which can be distinguished by the transient expression of Zscan4 genes originally identified for its specific expression in mouse two-cell stage embryos. Here, we report that the nascent protein synthesis is globally repressed in the Zscan4-positive state of ES cells, which is mediated by the transient expression of newly identified eukaryotic translation initiation factor 1A (Eif1a)-like genes. Eif1a-like genes, clustered on Chromosome 12, show the high sequence similarity to the Eifa1 and consist of 10 genes (Eif1al1–Eif1al10) and 9 pseudogenes (Eif1al-ps1–Eif1al-ps9). The analysis of the expressed sequence tag database showed that Eif1a-like genes are expressed mostly in the two-cell stage mouse embryos. Microarray analyses and quantitative real-time polymerase chain reaction analyses show that Eif1a-like genes are expressed specifically in the Zscan4-positive state of ES cells. These results indicate a novel mechanism to repress protein synthesis by Eif1a-like genes and a unique mode of protein synthesis regulation in ES cells, which undergo a transient and reversible repression of global protein synthesis in the Zscan4-positive state.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Chad A. Galloway; Sonal Dalvi; Sandy S. C. Hung; Leslie MacDonald; Lisa R. Latchney; Raymond C.B. Wong; Robyn H. Guymer; David A. Mackey; David S. Williams; Mina Chung; David M. Gamm; Alice Pébay; Alex W. Hewitt; Ruchira Singh
Significance Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, pharmacological treatments in these diseases are limited due to the lack of knowledge of underlying disease mechanisms, partly because appropriate human models to study AMD and related MDs are lacking. Furthermore, in the living human eye, the entire retina acts as a functional unit, making it difficult to investigate the specific contribution of a particular retinal cell type in the disease. Here, we established human models of multiple MDs, which demonstrated similar molecular and phenotypic manifestations within these diseases. Furthermore, we showed that dysfunction of an individual cell type, retinal pigment epithelium cells in the retina, is sufficient for the development of key pathological features in these MDs. Age-related macular degeneration (AMD) and related macular dystrophies (MDs) are a major cause of vision loss. However, the mechanisms underlying their progression remain ill-defined. This is partly due to the lack of disease models recapitulating the human pathology. Furthermore, in vivo studies have yielded limited understanding of the role of specific cell types in the eye vs. systemic influences (e.g., serum) on the disease pathology. Here, we use human induced pluripotent stem cell-retinal pigment epithelium (hiPSC-RPE) derived from patients with three dominant MDs, Sorsby’s fundus dystrophy (SFD), Doyne honeycomb retinal dystrophy/malattia Leventinese (DHRD), and autosomal dominant radial drusen (ADRD), and demonstrate that dysfunction of RPE cells alone is sufficient for the initiation of sub-RPE lipoproteinaceous deposit (drusen) formation and extracellular matrix (ECM) alteration in these diseases. Consistent with clinical studies, sub-RPE basal deposits were present beneath both control (unaffected) and patient hiPSC-RPE cells. Importantly basal deposits in patient hiPSC-RPE cultures were more abundant and displayed a lipid- and protein-rich “drusen-like” composition. Furthermore, increased accumulation of COL4 was observed in ECM isolated from control vs. patient hiPSC-RPE cultures. Interestingly, RPE-specific up-regulation in the expression of several complement genes was also seen in patient hiPSC-RPE cultures of all three MDs (SFD, DHRD, and ADRD). Finally, although serum exposure was not necessary for drusen formation, COL4 accumulation in ECM, and complement pathway gene alteration, it impacted the composition of drusen-like deposits in patient hiPSC-RPE cultures. Together, the drusen model(s) of MDs described here provide fundamental insights into the unique biology of maculopathies affecting the RPE–ECM interface.
Pharmacology & Therapeutics | 2017
Sandy S. C. Hung; Shahnaz Khan; Camden Lo; Alex W. Hewitt; Raymond C.B. Wong
ABSTRACT The revolution of induced pluripotent stem cell (iPSC) technology provides a platform for development of cell therapy, disease modeling and drug discovery. Recent technological advances now allow us to reprogram a patients somatic cells into induced pluripotent stem cells (iPSCs). Together with methods to differentiate these iPSCs into disease‐relevant cell types, we are now able to model disease in vitro using iPSCs. Importantly, this represents a robust in vitro platform using patient‐specific cells, providing opportunity for personalized precision medicine. Here we provide a review of advances using iPSC for drug development, and discuss the potential and limitations of iPSCs for drug discovery in neurodegenerative and ocular diseases. Emerging technologies that can facilitate the search for new drugs by assessment using in vitro disease models will also be discussed, including organoid differentiation, organ‐on‐chip, direct reprogramming and humanized animal models.