Sergej Filonovich
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sergej Filonovich.
Scientific Reports | 2013
Diana Gaspar; A. Pimentel; Tiago Mateus; J. P. Leitão; Jorge Soares; Bruno P. Falcão; Andreia Araújo; António Vicente; Sergej Filonovich; Hugo Águas; Rodrigo Martins; I. Ferreira
Metallic nanoparticles (NPs) have received recently considerable interest of photonic and photovoltaic communities. In this work, we report the optoelectronic properties of gold NPs (Au-NPs) obtained by depositing very thin gold layers on glass substrates through thermal evaporation electron-beam assisted process. The effect of mass thickness of the layer was evaluated. The polycrystalline Au-NPs, with grain sizes of 14 and 19 nm tend to be elongated in one direction as the mass thickness increase. A 2 nm layer deposited at 250°C led to the formation of Au-NPs with 10-20 nm average size, obtained by SEM images, while for a 5 nm layer the wide size elongates from 25 to 150 nm with a mean at 75 nm. In the near infrared region was observed an absorption enhancement of amorphous silicon films deposited onto the Au-NPs layers with a corresponding increase in the PL peak for the same wavelength region.
Energy and Environmental Science | 2011
Hugo Águas; Sanjay K. Ram; Andreia Araújo; Diana Gaspar; António Vicente; Sergej Filonovich; Elvira Fortunato; Rodrigo Martins; I. Ferreira
Nanostructured silicon single junction thin film solar cells were deposited on commercial red clay roof tiles with engobe surfaces and earthenware wall tiles with glazed surfaces, with a test area of 24 mm2. We studied the influence of the type of substrate tile, back contact, buffer layer and SiOx passivation layer on the optoelectronic performance of the solar cells. Despite the fact that typical micrometre-sized defects on the surfaces of the tiles and the porous nature of the ceramic substrates make deposition of homogeneous thin films on them quite challenging, we have been able to achieve a cell efficiency of 5% and a quantum efficiency of 80% on non-fully optimized cells on commercial tiles. The method is industrially employable utilizing pre-existing plasma-enhanced chemical vapour deposition technologies. The cost-effectiveness and industrial feasibility of the technique are discussed. Our study shows that photovoltaic tiles can combine energy generation with architectural aesthetics leading to significant implications for advancement in building integrated photovoltaics.
Journal of Materials Chemistry | 2014
J. Loureiro; Nuno M. Neves; Raquel Barros; Tiago Mateus; Rafael Santos; Sergej Filonovich; Sebastian Reparaz; Clivia M. Sotomayor-Torres; Frederic Wyczisk; Laurent Divay; Rodrigo Martins; I. Ferreira
Improved thermoelectric properties of Aluminum Zinc Oxide (AZO) thin films deposited by radio frequency (RF) and pulsed Direct Current (DC) magnetron sputtering at room temperature are reported. In both techniques films were deposited using sintered and non-sintered targets produced from nano-powders. It is confirmed that both the Al doping concentration and film thickness control the thermoelectric, optical and structural properties of these films. Seebeck coefficients up to −134 μV K−1 and electrical conductivities up to 4 × 104 (Ω m)−1 lead to power factors up to 4 × 10−4 W mK−2, which is above the state-of-the-art for similar materials, almost by a factor of three. The thermoelectric I–V response of an optimized AZO element with a planar geometry was measured and a maximum power output of 2.3 nW, for a temperature gradient of 20 K near room temperature, was obtained. Moreover, the low thermal conductivity (<1.19 W mK−1) yields a ZT value above 0.1. This is an important result as it is at least three times higher than the ZT found in the literature for AZO, at room temperature, opening new doors for applications of this inexpensive, abundant and environmental friendly material, in a new era of thermoelectric devices.
Science and Technology of Advanced Materials | 2012
Sergej Filonovich; Hugo Águas; Tito Busani; António Vicente; Andreia Araújo; Diana Gaspar; Márcia Vilarigues; J. P. Leitão; Elvira Fortunato; Rodrigo Martins
Abstract We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20 nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film.
Plasmonics | 2014
Diana Gaspar; A. Pimentel; Manuel J. Mendes; Tiago Mateus; Bruno P. Falcão; J. P. Leitão; Jorge Soares; Andreia Araújo; António Vicente; Sergej Filonovich; Hugo Águas; Rodrigo Martins; I. Ferreira
Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.
Science and Technology of Advanced Materials | 2013
Andreia Araújo; Raquel Barros; Tiago Mateus; Diana Gaspar; Nuno Neves; António Vicente; Sergej Filonovich; Pedro Barquinha; Elvira Fortunato; A.M. Ferraria; Ana Maria Botelho do Rego; Ana Bicho; Hugo Águas; Rodrigo Martins
Abstract We report the effect of a disperse carbon interlayer between the n-a-Si:H layer and an aluminium zinc oxide (AZO) back contact on the performance of amorphous silicon solar cells. Carbon was incorporated to the AZO film as revealed by x-ray photoelectron spectroscopy and energy-dispersive x-ray analysis. Solar cells fabricated on glass substrates using AZO in the back contact performed better when a disperse carbon interlayer was present in their structure. They exhibited an initial efficiency of 11%, open-circuit voltage Voc = 1.6 V, short-circuit current JSC = 11 mA cm−2 and a filling factor of 63%, that is, a 10% increase in the JSC and 20% increase in the efficiency compared to a standard solar cell.
Optics Express | 2012
Javier Contreras; Luís Gomes; Sergej Filonovich; Nuno Correia; Elvira Fortunato; Rodrigo Martins; I. Ferreira
The 3D scanning electro-optical characteristics of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) were analyzed. The system was mounted on a platform for imaging 3D objects using the triangulation principle with a sheet-of-light laser. New obtained results reveal a minimum possible gap or simulated defect detection of approximately 350 μm. Furthermore, a first study of the angle for 3D scanning was also performed, allowing for a broad range of angles to be used in the process. The relationship between the scanning angle of the incident light onto the object and the image displacement distance on the sensor was determined for the first time in this system setup. Rendering of 3D object profiles was performed at a significantly higher number of frames than in the past and was possible for an incident light angle range of 15 ° to 85 °.
IEEE Sensors Journal | 2012
Javier Contreras; Marek Idzikowski; Sónia Pereira; Sergej Filonovich; Elvira Fortunato; Rodrigo Martins; I. Ferreira
A 32/128 linear array of 1-D amorphous silicon position sensitive detectors (PSD) was integrated into a self constructed suitable and portable data acquisition prototype system. The system is comprised by a commercially available existing electronics module suitable for photodiode data acquisition operations and by another adapter module, which allows for removal and replacement of the 32/128 PSD based sensor. This system is applied for imaging 3-D objects using the triangulation principle with a sheet-of-light laser. The sensor array response obtained from the reflected light of the object was fed into an electronic readout system and the corresponding signals were analyzed using the relevant data algorithm. The obtained results show a sensor nonlinearity of about 4%-7%, a wide sensor/system dynamic range and a 3-D profile spatial resolution supplied by each sensor strip of 339 μm, which can easily be reduced to 8.5 μm and even further with appropriate software modifications.
Optics Express | 2014
Seweryn Morawiec; Manuel J. Mendes; Sergej Filonovich; Tiago Mateus; S. Mirabella; Hugo Águas; I. Ferreira; F. Simone; Elvira Fortunato; Rodrigo Martins; Francesco Priolo; I. Crupi
Vacuum | 2009
Sergej Filonovich; Hugo Águas; Iwona Bernacka-Wojcik; C. Gaspar; Márcia Vilarigues; Leonardo Bione Silva; Elvira Fortunato; Rodrigo Martins