Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Shady M. K. Mohamed is active.

Publication


Featured researches published by Shady M. K. Mohamed.


IEEE Transactions on Automatic Control | 2012

Robust Finite-Horizon Kalman Filtering for Uncertain Discrete-Time Systems

Shady M. K. Mohamed; Saeid Nahavandi

In this note, we propose a design for a robust finite-horizon Kalman filtering for discrete-time systems suffering from uncertainties in the modeling parameters and uncertainties in the observations process (missing measurements). The system parameter uncertainties are expected in the state, output and white noise covariance matrices. We find the upper-bound on the estimation error covariance and we minimize the proposed upper-bound.


international conference on neural information processing | 2014

Adaptive Washout Algorithm Based Fuzzy Tuning for Improving Human Perception

Houshyar Asadi; Arash Mohammadi; Shady M. K. Mohamed; Delpak Rahim Zadeh; Saeid Nahavandi

The aim of this paper is to provide a washout filter that can accurately produce vehicle motions in the simulator platform at high fidelity, within the simulators physical limitations. This is to present the driver with a realistic virtual driving experience to minimize the human sensation error between the real driving and simulated driving situation. To successfully achieve this goal, an adaptive washout filter based on fuzzy logic online tuning is proposed to overcome the shortcomings of fixed parameters, lack of human perception and conservative motion features in the classical washout filters. The cutoff frequencies of high-pass, low-pass filters are tuned according to the displacement information of platform, workspace limitation and human sensation in real time based on fuzzy logic system. The fuzzy based scaling method is proposed to let the platform uses the workspace whenever is far from its margins. The proposed motion cueing algorithm is implemented in MATLAB/Simulink software packages and provided results show the capability of this method due to its better performance, improved human sensation and exploiting the platform more efficiently without reaching the motion limitation.


international conference on neural information processing | 2014

Adaptive Translational Cueing Motion Algorithm Using Fuzzy Based Tilt Coordination

Houshyar Asadi; Arash Mohammadi; Shady M. K. Mohamed; Saeid Nahavandi

Driving simulators have become useful research tools for the institution and laboratories which are studying in different fields of vehicular and transport design to increase road safety. Although classical washout filters are broadly used because of their short processing time, simplicity and ease of adjust, they have some disadvantages such as generation of wrong sensation of motions, false cue motions, and also their tuning process which is focused on the worst case situations leading to a poor usage of the workspace. The aim of this study is to propose a new motion cueing algorithm that can accurately transform vehicle specific force into simulator platform motions at high fidelity within the simulator’s physical limitations. This method is proposed to compensate wrong cueing motion caused by saturation of tilt coordination rate limit using an adaptive correcting signal based on added fuzzy logic into translational channel to minimize the human sensation error and exploit the platform more efficiently.


Vehicle System Dynamics | 2015

Optimisation of nonlinear motion cueing algorithm based on genetic algorithm

Houshyar Asadi; Shady M. K. Mohamed; Delpak Rahim Zadeh; Saeid Nahavandi

Motion cueing algorithms (MCAs) are playing a significant role in driving simulators, aiming to deliver the most accurate human sensation to the simulator drivers compared with a real vehicle driver, without exceeding the physical limitations of the simulator. This paper provides the optimisation design of an MCA for a vehicle simulator, in order to find the most suitable washout algorithm parameters, while respecting all motion platform physical limitations, and minimising human perception error between real and simulator driver. One of the main limitations of the classical washout filters is that it is attuned by the worst-case scenario tuning method. This is based on trial and error, and is effected by driving and programmers experience, making this the most significant obstacle to full motion platform utilisation. This leads to inflexibility of the structure, production of false cues and makes the resulting simulator fail to suit all circumstances. In addition, the classical method does not take minimisation of human perception error and physical constraints into account. Production of motion cues and the impact of different parameters of classical washout filters on motion cues remain inaccessible for designers for this reason. The aim of this paper is to provide an optimisation method for tuning the MCA parameters, based on nonlinear filtering and genetic algorithms. This is done by taking vestibular sensation error into account between real and simulated cases, as well as main dynamic limitations, tilt coordination and correlation coefficient. Three additional compensatory linear blocks are integrated into the MCA, to be tuned in order to modify the performance of the filters successfully. The proposed optimised MCA is implemented in MATLAB/Simulink software packages. The results generated using the proposed method show increased performance in terms of human sensation, reference shape tracking and exploiting the platform more efficiently without reaching the motion limitations.


systems man and cybernetics | 2017

Robust Optimal Motion Cueing Algorithm Based on the Linear Quadratic Regulator Method and a Genetic Algorithm

Houshyar Asadi; Shady M. K. Mohamed; Chee Peng Lim; Saeid Nahavandi

The aim of this paper is to design and develop an optimal motion cueing algorithm (MCA) based on the genetic algorithm (GA) that can generate high-fidelity motions within the motion simulators physical limitations. Both, angular velocity and linear acceleration are adopted as the inputs to the MCA for producing the higher order optimal washout filter. The linear quadratic regulator (LQR) method is used to constrain the human perception error between the real and simulated driving tasks. To develop the optimal MCA, the latest mathematical models of the vestibular system and simulator motion are taken into account. A reference frame with the center of rotation at the drivers head to eliminate false motion cues caused by rotation of the simulator to the translational motion of the drivers head as well as to reduce the workspace displacement is employed. To improve the developed LQR-based optimal MCA, a new strategy based on optimal control theory and the GA is devised. The objective is to reproduce a signal that can follow closely the reference signal and avoid false motion cues by adjusting the parameters from the obtained LQR-based optimal washout filter. This is achieved by taking a series of factors into account, which include the vestibular sensation error between the real and simulated cases, the main dynamic limitations, the human threshold limiter in tilt coordination, the cross correlation coefficient, and the human sensation error fluctuation. It is worth pointing out that other related investigations in the literature normally do not consider the effects of these factors. The proposed optimized MCA based on the GA is implemented using the MATLAB/Simulink software. The results show the effectiveness of the proposed GA-based method in enhancing human sensation, maximizing the reference shape tracking, and reducing the workspace usage.


systems, man and cybernetics | 2012

Non-uniform sparsity in rapid compressive sensing MRI

Fuleah A. Razzaq; Shady M. K. Mohamed; Asim Bhatti; Saeid Nahavandi

Magnetic Resonance Imaging (MRI) is one of the prominent medical imaging techniques. This process is time-consuming and can take several minutes to acquire one image. The aim of this research is to reduce the imaging process time of MRI. This issue is addressed by reducing the number of acquired measurements using theory of Compressive Sensing (CS). Compressive Sensing exploits sparsity in MR images. Randomly under sampled k-space generates incoherent noise which can be handled using a nonlinear image reconstruction method. In this paper, a new framework is presented based on the idea to exploit non-uniform nature of sparsity in MR images, where local sparsity constrains were used instead of traditional global constraint, to further reduce the sample set. Experimental results and comparison with CS using global constraint are demonstrated.


international symposium on biomedical imaging | 2012

A marginalised Markov Chain Monte Carlo approach for model based analysis of EEG data

Imali Hettiarachchi; Shady M. K. Mohamed; Saeid Nahavandi

The work presented in this paper focuses on fitting of a neural mass model to EEG data. Neurophysiology inspired mathematical models were developed for simulating brains electrical activity imaged through Electroencephalography (EEG) more than three decades ago. At the present well informative models which even describe the functional integration of cortical regions also exists. However, a very limited amount of work is reported in literature on the subject of model fitting to actual EEG data. Here, we present a Bayesian approach for parameter estimation of the EEG model via a marginalized Markov Chain Monte Carlo (MCMC) approach.


IEEE-ASME Transactions on Mechatronics | 2015

Incorporating Human Perception With the Motion Washout Filter Using Fuzzy Logic Control

Houshyar Asadi; Shady M. K. Mohamed; Saeid Nahavandi

Nowadays, classical washout filters are extensively used in commercial motion simulators. Even though there are several advantages for classical washout filters, such as short processing time, simplicity and ease of adjustment, they have several shortcomings. The main disadvantage is the fixed scheme and parameters of the classical washout filter cause inflexibility of the structure and thus the resulting simulator fails to suit all circumstances. Moreover, it is a conservative approach and the platform cannot be fully exploited. The aim of this research is to present a fuzzy logic approach and take the human perception error into account in the classical motion cueing algorithm, in order to improve both the physical limits of restitution and realistic human sensations. The fuzzy compensator signal is applied to adjust the filtered signals on the longitudinal and rotational channels online, as well as the tilt coordination to minimize the vestibular sensation error below the human perception threshold. The results indicate that the proposed fuzzy logic controllers significantly minimize the drawbacks of having fixed parameters and conservativeness in the classical washout filter. In addition, the performance of motion cueing algorithm and human perception for most occasions is improved.


systems, man and cybernetics | 2013

Cepstrum Based Unsupervised Spike Classification

Sherif Haggag; Shady M. K. Mohamed; Asim Bhatti; Nong Gu; Hailing Zhou; Saeid Nahavandi

In this research, we study the effect of feature selection in the spike detection and sorting accuracy. We introduce a new feature representation for neural spikes from multichannel recordings. The features selection plays a significant role in analyzing the response of brain neurons. The more precise selection of features leads to a more accurate spike sorting, which can group spikes more precisely into clusters based on the similarity of spikes. Proper spike sorting will enable the association between spikes and neurons. Different with other threshold-based methods, the cepstrum of spike signals is employed in our method to select the candidates of spike features. To choose the best features among different candidates, the Kolmogorov-Smirnov (KS) test is utilized. Then, we rely on the super paramagnetic method to cluster the neural spikes based on KS features. Simulation results demonstrate that the proposed method not only achieve more accurate clustering results but also reduce computational burden, which implies that it can be applied into real-time spike analysis.


international conference on neural information processing | 2013

Spike sorting using hidden markov models

Hailing Zhou; Shady M. K. Mohamed; Asim Bhatti; Chee Peng Lim; Nong Gu; Sherif Haggag; Saeid Nahavandi

In this paper, hidden Markov models (HMM) is studied for spike sorting. We notice that HMM state sequences have capability to represent spikes precisely and concisely. We build a HMM for spikes, where HMM states respect spike significant shape variations. Four shape variations are introduced: silence, going up, going down and peak. They constitute every spike with an underlying probabilistic dependence that is modelled by HMM. Based on this representation, spikes sorting becomes a classification problem of compact HMM state sequences. In addition, we enhance the method by defining HMM on extracted Cepstrum features, which improves the accuracy of spike sorting. Simulation results demonstrate the effectiveness of the proposed method as well as the efficiency.

Collaboration


Dive into the Shady M. K. Mohamed's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge