Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Siobhan Glavey is active.

Publication


Featured researches published by Siobhan Glavey.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Engineered nanomedicine for myeloma and bone microenvironment targeting.

Archana Swami; Michaela R. Reagan; Pamela Basto; Yuji Mishima; Nazila Kamaly; Siobhan Glavey; Sufeng Zhang; Michele Moschetta; Dushanth Seevaratnam; Yong Zhang; Jinhe Liu; Masoumeh Memarzadeh; Jun Wu; Salomon Manier; Jinjun Shi; Nicolas Bertrand; Zhi Ning Lu; Kenichi Nagano; Roland Baron; Antonio Sacco; Aldo M. Roccaro; Omid C. Farokhzad; Irene M. Ghobrial

Significance Limited treatment options exist for cancer within the bone, as demonstrated by the inevitable, pernicious course of metastatic breast, prostate, and blood cancers. The difficulty of eliminating bone-residing cancer necessitates novel, alternative treatments to manipulate the tumor cells and their microenvironment, with minimal off-target effects. To this end, we engineered bone-homing, stealth nanoparticles to deliver anticancer, bone-stimulatory drugs, and demonstrated their utility with bortezomib (a model drug) and multiple myeloma (a model cancer). To test our hypothesis that increasing bone volume and strength inhibits tumor growth, mice were treated with these nanoparticles before being injected with cancer cells. Results demonstrated significantly slower myeloma growth and prolonged survival. Our research demonstrates the potential of bone-homing nanomedicine as an efficacious cancer treatment mechanism. Bone is a favorable microenvironment for tumor growth and a frequent destination for metastatic cancer cells. Targeting cancers within the bone marrow remains a crucial oncologic challenge due to issues of drug availability and microenvironment-induced resistance. Herein, we engineered bone-homing polymeric nanoparticles (NPs) for spatiotemporally controlled delivery of therapeutics to bone, which diminish off-target effects and increase local drug concentrations. The NPs consist of poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG), and bisphosphonate (or alendronate, a targeting ligand). The engineered NPs were formulated by blending varying ratios of the synthesized polymers: PLGA-b-PEG and alendronate-conjugated polymer PLGA-b-PEG-Ald, which ensured long circulation and targeting capabilities, respectively. The bone-binding ability of Ald-PEG-PLGA NPs was investigated by hydroxyapatite binding assays and ex vivo imaging of adherence to bone fragments. In vivo biodistribution of fluorescently labeled NPs showed higher retention, accumulation, and bone homing of targeted Ald-PEG-PLGA NPs, compared with nontargeted PEG-PLGA NPs. A library of bortezomib-loaded NPs (bone-targeted Ald-Bort-NPs and nontargeted Bort-NPs) were developed and screened for optimal physiochemical properties, drug loading, and release profiles. Ald-Bort-NPs were tested for efficacy in mouse models of multiple myeloma (MM). Results demonstrated significantly enhanced survival and decreased tumor burden in mice pretreated with Ald-Bort-NPs versus Ald-Empty-NPs (no drug) or the free drug. We also observed that bortezomib, as a pretreatment regimen, modified the bone microenvironment and enhanced bone strength and volume. Our findings suggest that NP-based anticancer therapies with bone-targeting specificity comprise a clinically relevant method of drug delivery that can inhibit tumor progression in MM.


Immunological Reviews | 2015

Targeting the bone marrow microenvironment in multiple myeloma

Yawara Kawano; Michele Moschetta; Salomon Manier; Siobhan Glavey; Gullu Gorgun; Aldo M. Roccaro; Kenneth C. Anderson; Irene M. Ghobrial

Multiple myeloma (MM) is characterized by clonal expansion of malignant plasma cells in the bone marrow (BM). Despite the significant advances in treatment, MM is still a fatal malignancy. This is mainly due to the supportive role of the BM microenvironment in differentiation, migration, proliferation, survival, and drug resistance of the malignant plasma cells. The BM microenvironment is composed of a cellular compartment (stromal cells, osteoblasts, osteoclasts, endothelial cells, and immune cells) and a non‐cellular compartment. In this review, we discuss the interaction between the malignant plasma cell and the BM microenvironment and the strategy to target them.


Blood | 2014

The sialyltransferase ST3GAL6 influences homing and survival in multiple myeloma

Siobhan Glavey; Salomon Manier; Alessandro Natoni; Antonio Sacco; Michele Moschetta; Michaela R. Reagan; Laura Murillo; Ilyas Sahin; Ping Wu; Yuji Mishima; Yunyu Zhang; Weijia Zhang; Gareth J. Morgan; Lokesh Joshi; Aldo M. Roccaro; Irene M. Ghobrial; Michael E. O'Dwyer

Glycosylation is a stepwise procedure of covalent attachment of oligosaccharide chains to proteins or lipids, and alterations in this process, especially increased sialylation, have been associated with malignant transformation and metastasis. The role of altered sialylation in multiple myeloma (MM) cell trafficking has not been previously investigated. In the present study we identified high expression of β-galactoside α-2,3-sialyltransferase, ST3GAL6, in MM cell lines and patients. This gene plays a key role in selectin ligand synthesis in humans through the generation of functional sialyl Lewis X. In MRC IX patients, high expression of this gene is associated with inferior overall survival. In this study we demonstrate that knockdown of ST3GAL6 results in a significant reduction in levels of α-2,3-linked sialic acid on the surface of MM cells with an associated significant reduction in adhesion to MM bone marrow stromal cells and fibronectin along with reduced transendothelial migration in vitro. In support of our in vitro findings, we demonstrate significantly reduced homing and engraftment of ST3GAL6 knockdown MM cells to the bone marrow niche in vivo, along with decreased tumor burden and prolonged survival. This study points to the importance of altered glycosylation, particularly sialylation, in MM cell adhesion and migration.


Blood | 2014

Investigating osteogenic differentiation in multiple myeloma using a novel 3D bone marrow niche model

Michaela R. Reagan; Yuji Mishima; Siobhan Glavey; Yong Zhang; Salomon Manier; Zhi Ning Lu; Masoumeh Memarzadeh; Yu Zhang; Antonio Sacco; Yosra Aljawai; Jiantao Shi; Yu-Tzu Tai; John E. Ready; David L. Kaplan; Aldo M. Roccaro; Irene M. Ghobrial

Clonal proliferation of plasma cells within the bone marrow (BM) affects local cells, such as mesenchymal stromal cells (MSCs), leading to osteolysis and fatality in multiple myeloma (MM). Consequently, there is an urgent need to find better mechanisms of inhibiting myeloma growth and osteolytic lesion development. To meet this need and accelerate clinical translation, better models of myeloma within the BM are required. Herein we have developed a clinically relevant, three-dimensional (3D) myeloma BM coculture model that mimics bone cell/cancer cell interactions within the bone microenvironment. The coculture model and clinical samples were used to investigate myeloma growth, osteogenesis inhibition, and myeloma-induced abnormalities in MM-MSCs. This platform demonstrated myeloma support of capillary-like assembly of endothelial cells and cell adhesion-mediated drug resistance (CAM-DR). Also, distinct normal donor (ND)- and MM-MSC miRNA (miR) signatures were identified and used to uncover osteogenic miRs of interest for osteoblast differentiation. More broadly, our 3D platform provides a simple, clinically relevant tool to model cancer growth within the bone-useful for investigating skeletal cancer biology, screening compounds, and exploring osteogenesis. Our identification and efficacy validation of novel bone anabolic miRs in MM opens more opportunities for novel approaches to cancer therapy via stromal miR modulation.


Cell Reports | 2015

CXCR4 regulates extra-medullary myeloma through epithelial-mesenchymal transition-like transcriptional activation

Aldo M. Roccaro; Yuji Mishima; Antonio Sacco; Michele Moschetta; Yu-Tzu Tai; Jiantao Shi; Yong Zhang; Michaela R. Reagan; Daisy Huynh; Yawara Kawano; Ilyas Sahin; Marco Chiarini; Salomon Manier; Michele Cea; Yosra Aljawai; Siobhan Glavey; Elizabeth A. Morgan; Chin Pan; Franziska Michor; Pina M. Cardarelli; Michelle Kuhne; Irene M. Ghobrial

Extra-medullary disease (EMD) in multiple myeloma (MM) is associated with poor prognosis and resistance to chemotherapy. However, molecular alterations that lead to EMD have not been well defined. We developed bone marrow (BM)- and EMD-prone MM syngeneic cell lines; identified that epithelial-to-mesenchymal transition (EMT) transcriptional patterns were significantly enriched in both clones compared to parental cells, together with higher levels of CXCR4 protein; and demonstrated that CXCR4 enhanced the acquisition of an EMT-like phenotype in MM cells with a phenotypic conversion for invasion, leading to higher bone metastasis and EMD dissemination in vivo. In contrast, CXCR4 silencing led to inhibited tumor growth and reduced survival. Ulocuplumab, a monoclonal anti-CXCR4 antibody, inhibited MM cell dissemination, supported by suppression of the CXCR4-driven EMT-like phenotype. These results suggest that targeting CXCR4 may act as a regulator of EMD through EMT-like transcriptional modulation, thus representing a potential therapeutic strategy to prevent MM disease progression.


Blood | 2014

Pyk2 promotes tumor progression in multiple myeloma.

Yu Zhang; Michele Moschetta; Daisy Huynh; Yu-Tzu Tai; Yong Zhang; Wenjing Zhang; Yuji Mishima; Jennifer E. Ring; Winnie F. Tam; Qunli Xu; Patricia Maiso; Michaela R. Reagan; Ilyas Sahin; Antonio Sacco; Salomon Manier; Yosra Aljawai; Siobhan Glavey; Nikhil C. Munshi; Kenneth C. Anderson; Jonathan A. Pachter; Aldo M. Roccaro; Irene M. Ghobrial

Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family that has been recently linked to tumor development. However, its role in modulating multiple myeloma (MM) biology and disease progression remains unexplored. We first demonstrated that patients with MM present with higher expression of Pyk2 compared with healthy individuals. By using loss-of-function approaches, we found that Pyk2 inhibition led to reduction of MM tumor growth in vivo as well as decreased cell proliferation, cell-cycle progression, and adhesion ability in vitro. In turn, overexpression of Pyk2 promoted the malignant phenotype, substantiated by enhanced tumor growth and reduced survival. Mechanistically, inhibition of Pyk2 reduced activation of Wnt/β-catenin signaling by destabilizing β-catenin, leading to downregulation of c-Myc and Cyclin D1. Furthermore, treatment of MM cells with the FAK/Pyk2 inhibitor VS-4718 effectively inhibited MM cell growth both in vitro and in vivo. Collectively, our findings describe the tumor-promoting role of Pyk2 in MM, thus providing molecular evidence for a novel tyrosine kinase inhibitor as a new therapeutic option in MM.


Blood | 2017

Prognostic role of circulating exosomal miRNAs in multiple myeloma

Salomon Manier; Chia-Jen Liu; Hervé Avet-Loiseau; Jihye Park; Jiantao Shi; Federico Campigotto; Karma Salem; Daisy Huynh; Siobhan Glavey; Bradley Rivotto; Antonio Sacco; Aldo M. Roccaro; Juliette M.C. Bouyssou; Stéphane Minvielle; Philippe Moreau; Thierry Facon; Xavier Leleu; Edie Weller; Lorenzo Trippa; Irene M. Ghobrial

Exosomes, secreted by several cell types, including cancer cells, can be isolated from the peripheral blood and have been shown to be powerful markers of disease progression in cancer. In this study, we examined the prognostic significance of circulating exosomal microRNAs (miRNAs) in multiple myeloma (MM). A cohort of 156 patients with newly diagnosed MM, uniformly treated and followed, was studied. Circulating exosomal miRNAs were isolated and used to perform a small RNA sequencing analysis on 10 samples and a quantitative reverse transcription polymerase chain reaction (qRT-PCR) array on 156 samples. We studied the relationship between miRNA levels and patient outcomes, including progression-free survival (PFS) and overall survival (OS). We identified miRNAs as the most predominant small RNAs present in exosomes isolated from the serum of patients with MM and healthy controls by small RNA sequencing of circulating exosomes. We then analyzed exosomes isolated from serum samples of 156 patients using a qRT-PCR array for 22 miRNAs. Two of these miRNAs, let-7b and miR-18a, were significantly associated with both PFS and OS in the univariate analysis and were still statistically significant after adjusting for the International Staging System and adverse cytogenetics in the multivariate analysis. Our findings support the use of circulating exosomal miRNAs to improve the identification of patients with newly diagnosed MM with poor outcomes. The results require further validation in other independent prospective MM cohorts.


Leukemia | 2016

Targeting vasculogenesis to prevent progression in multiple myeloma

Michele Moschetta; Yuji Mishima; Yawara Kawano; Salomon Manier; Bruno Paiva; L Palomera; Yosra Aljawai; Arianna Calcinotto; C Unitt; Ilyas Sahin; Antonio Sacco; Siobhan Glavey; Jiantao Shi; Michaela R. Reagan; Felipe Prosper; M Bellone; Marta Chesi; Leif Bergsagel; Angelo Vacca; Aldo M. Roccaro; Irene M. Ghobrial

The role of endothelial progenitor cell (EPC)-mediated vasculogenesis in hematological malignancies is not well explored. Here, we showed that EPCs are mobilized from the bone marrow (BM) to the peripheral blood at early stages of multiple myeloma (MM); and recruited to MM cell-colonized BM niches. Using EPC-defective ID1+/− ID3−/− mice, we found that MM tumor progression is dependent on EPC trafficking. By performing RNA-sequencing studies, we confirmed that endothelial cells can enhance proliferation and favor cell-cycle progression only in MM clones that are smoldering-like and have dependency on endothelial cells for tumor growth. We further confirmed that angiogenic dependency occurs early and not late during tumor progression in MM. By using a VEGFR2 antibody with anti-vasculogenic activity, we demonstrated that early targeting of EPCs delays tumor progression, while using the same agent at late stages of tumor progression is ineffective. Thus, although there is significant angiogenesis in myeloma, the dependency of the tumor cells on EPCs and vasculogenesis may actually precede this step. Manipulating vasculogenesis at an early stage of disease may be examined in clinical trials in patients with smoldering MM, and other hematological malignancies with precursor conditions.


PLOS ONE | 2014

Global Epigenetic Regulation of MicroRNAs in Multiple Myeloma

Wenjing Zhang; Yaoyu E. Wang; Yu Zhang; Xavier Leleu; Michaela R. Reagan; Yong Zhang; Yuji Mishima; Siobhan Glavey; Salomon Manier; Antonio Sacco; Bo Jiang; Aldo M. Roccaro; Irene M. Ghobrial

Epigenetic changes frequently occur during tumorigenesis and DNA hypermethylation may account for the inactivation of tumor suppressor genes in cancer cells. Studies in Multiple Myeloma (MM) have shown variable DNA methylation patterns with focal hypermethylation changes in clinically aggressive subtypes. We studied global methylation patterns in patients with relapsed/refractory MM and found that the majority of methylation peaks were located in the intronic and intragenic regions in MM samples. Therefore, we investigated the effect of methylation on miRNA regulation in MM. To date, the mechanism by which global miRNA suppression occurs in MM has not been fully described. In this study, we report hypermethylation of miRNAs in MM and perform confirmation in MM cell lines using bisulfite sequencing and methylation-specific PCR (MSP) in the presence or absence of the DNA demethylating agent 5-aza-2′-deoxycytidine. We further characterized the hypermethylation-dependent inhibition of miR-152, -10b-5p and -34c-3p which was shown to exert a putative tumor suppressive role in MM. These findings were corroborated by the demonstration that the same miRNAs were down-regulated in MM patients compared to healthy individuals, alongside enrichment of miR-152-, -10b-5p, and miR-34c-3p-predicted targets, as shown at the mRNA level in primary MM cells. Demethylation or gain of function studies of these specific miRNAs led to induction of apoptosis and inhibition of proliferation as well as down-regulation of putative oncogene targets of these miRNAs such as DNMT1, E2F3, BTRC and MYCBP. These findings provide the rationale for epigenetic therapeutic approaches in subgroups of MM.


Leukemia | 2017

Proteomic characterization of human multiple myeloma bone marrow extracellular matrix

Siobhan Glavey; Alexandra Naba; Salomon Manier; Karl R. Clauser; S Tahri; Jihye Park; Michaela R. Reagan; Michele Moschetta; Yuji Mishima; Manuela Gambella; Alberto Rocci; Antonio Sacco; Michael E. O'Dwyer; John M. Asara; A Palumbo; Aldo M. Roccaro; Richard O. Hynes; Irene M. Ghobrial

The extracellular matrix (ECM) is a major component of the tumor microenvironment, contributing to the regulation of cell survival, proliferation, differentiation and metastasis. In multiple myeloma (MM), interactions between MM cells and the bone marrow (BM) microenvironment, including the BM ECM, are critical to the pathogenesis of the disease and the development of drug resistance. Nevertheless, composition of the ECM in MM and its role in supporting MM pathogenesis has not been reported. We have applied a novel proteomic-based strategy and defined the BM ECM composition in patients with monoclonal gammopathy of undetermined significance (MGUS), newly diagnosed and relapsed MM compared with healthy donor-derived BM ECM. In this study, we show that the tumor ECM is remodeled at the mRNA and protein levels in MGUS and MM to allow development of a permissive microenvironment. We further demonstrate that two ECM-affiliated proteins, ANXA2 and LGALS1, are more abundant in MM and high expression is associated with a decreased overall survival. This study points to the importance of ECM remodeling in MM and provides a novel proteomic pipeline for interrogating the role of the ECM in cancers with BM tropism.

Collaboration


Dive into the Siobhan Glavey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge