Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sushma Iyengar is active.

Publication


Featured researches published by Sushma Iyengar.


Journal of Biological Chemistry | 2011

KAP1 Protein: An Enigmatic Master Regulator of the Genome

Sushma Iyengar; Peggy J. Farnham

In mammalian cells, multiple cellular processes, including gene silencing, cell growth and differentiation, pluripotency, neoplastic transformation, apoptosis, DNA repair, and maintenance of genomic integrity, converge on the evolutionarily conserved protein KAP1, which is thought to regulate the dynamic organization of chromatin structure via its ability to influence epigenetic patterns and chromatin compaction. In this minireview, we discuss how KAP1 might execute such pleiotropic effects, focusing on genomic targeting mechanisms, protein-protein interactions, specific post-translational modifications of both KAP1 and associated histones, and transcriptome analyses of cells deficient in KAP1.


Nucleic Acids Research | 2010

Sole-Search: an integrated analysis program for peak detection and functional annotation using ChIP-seq data

Kimberly R. Blahnik; Lei Dou; Henriette O'Geen; Timothy M. McPhillips; Xiaoqin Xu; Alina R. Cao; Sushma Iyengar; Charles M. Nicolet; Bertram Ludäscher; Ian Korf; Peggy J. Farnham

Next-generation sequencing is revolutionizing the identification of transcription factor binding sites throughout the human genome. However, the bioinformatics analysis of large datasets collected using chromatin immunoprecipitation and high-throughput sequencing is often a roadblock that impedes researchers in their attempts to gain biological insights from their experiments. We have developed integrated peak-calling and analysis software (Sole-Search) which is available through a user-friendly interface and (i) converts raw data into a format for visualization on a genome browser, (ii) outputs ranked peak locations using a statistically based method that overcomes the significant problem of false positives, (iii) identifies the gene nearest to each peak, (iv) classifies the location of each peak relative to gene structure, (v) provides information such as the number of binding sites per chromosome and per gene and (vi) allows the user to determine overlap between two different experiments. In addition, the program performs an analysis of amplified and deleted regions of the input genome. This software is web-based and automated, allowing easy and immediate access to all investigators. We demonstrate the utility of our software by collecting, analyzing and comparing ChIP-seq data for six different human transcription factors/cell line combinations.


Molecular and Cellular Biology | 2011

Functional Analysis of KAP1 Genomic Recruitment

Sushma Iyengar; Alexey V. Ivanov; Victor X. Jin; Frank J. Rauscher; Peggy J. Farnham

ABSTRACT TRIM28 (KAP1) is upregulated in many cancers and has been implicated in both transcriptional activation and repression. Using chromatin immunoprecipitation and sequencing, we show that KAP1 binding sites fall into several categories, specifically, the 3′ coding exons of zinc finger (ZNF) genes and promoter regions of ZNFs and other genes. The currently accepted model is that KAP1 is recruited to the genome via interaction of its N-terminal RBCC domain with KRAB ZNFs (KRAB domain containing ZNFs). To determine whether the interaction of KAP1 with KRAB ZNFs is the mechanism by which KAP1 is recruited to genomic binding sites, we analyzed stable cell lines that express tagged wild-type and mutant KAP1. Surprisingly, deletion of the RBCC domain abolished KAP1 binding to the 3′ exons of ZNF genes but KAP1 binding to promoter regions was unaffected. Using KAP1 knockdown cells, we showed that the genes most responsive to KAP1 were not ZNF genes but instead were either indirect targets or had KAP1 bound 10 to 100 kb from the transcription start site. Therefore, our studies suggest that KAP1 plays a role distinct from transcriptional regulation at the majority of its strongest binding sites.


PLOS ONE | 2011

Characterization of the Contradictory Chromatin Signatures at the 3′ Exons of Zinc Finger Genes

Kimberly R. Blahnik; Lei Dou; Lorigail Echipare; Sushma Iyengar; Henriette O'Geen; Erica Sanchez; Yongjun Zhao; Marco A. Marra; Martin Hirst; Joseph F. Costello; Ian Korf; Peggy J. Farnham

The H3K9me3 histone modification is often found at promoter regions, where it functions to repress transcription. However, we have previously shown that 3′ exons of zinc finger genes (ZNFs) are marked by high levels of H3K9me3. We have now further investigated this unusual location for H3K9me3 in ZNF genes. Neither bioinformatic nor experimental approaches support the hypothesis that the 3′ exons of ZNFs are promoters. We further characterized the histone modifications at the 3′ ZNF exons and found that these regions also contain H3K36me3, a mark of transcriptional elongation. A genome-wide analysis of ChIP-seq data revealed that ZNFs constitute the majority of genes that have high levels of both H3K9me3 and H3K36me3. These results suggested the possibility that the ZNF genes may be imprinted, with one allele transcribed and one allele repressed. To test the hypothesis that the contradictory modifications are due to imprinting, we used a SNP analysis of RNA-seq data to demonstrate that both alleles of certain ZNF genes having H3K9me3 and H3K36me3 are transcribed. We next analyzed isolated ZNF 3′ exons using stably integrated episomes. We found that although the H3K36me3 mark was lost when the 3′ ZNF exon was removed from its natural genomic location, the isolated ZNF 3′ exons retained the H3K9me3 mark. Thus, the H3K9me3 mark at ZNF 3′ exons does not impede transcription and it is regulated independently of the H3K36me3 mark. Finally, we demonstrate a strong relationship between the number of tandemly repeated domains in the 3′ exons and the H3K9me3 mark. We suggest that the H3K9me3 at ZNF 3′ exons may function to protect the genome from inappropriate recombination rather than to regulate transcription.


PLOS ONE | 2011

Epigenetic Modulation of miR-122 Facilitates Human Embryonic Stem Cell Self-Renewal and Hepatocellular Carcinoma Proliferation

Christine J. Jung; Sushma Iyengar; Kimberly R. Blahnik; Tijess P. Ajuha; Joy X. Jiang; Peggy J. Farnham; Mark A. Zern

The self-renewal capacity ascribed to hESCs is paralleled in cancer cell proliferation, suggesting that a common network of genes may facilitate the promotion of these traits. However, the molecular mechanisms that are involved in regulating the silencing of these genes as stem cells differentiate into quiescent cellular lineages remain poorly understood. Here, we show that a differentiated cell specific miR-122 exemplifies this regulatory attribute by suppressing the translation of a gene, Pkm2, which is commonly enriched in hESCs and liver cancer cells (HCCs), and facilitates self-renewal and proliferation. Through a series of gene expression analysis, we show that miR-122 expression is highly elevated in quiescent human primary hepatocytes (hPHs) but lost or attenuated in hESCs and HCCs, while an opposing expression pattern is observed for Pkm2. Depleting hESCs and HCCs of Pkm2, or overexpressing miR-122, leads to a common deficiency in self-renewal and proliferation. Likewise, during the differentiation process of hESCs into hepatocytes, a reciprocal expression pattern is observed between miR-122 and Pkm2. An examination of the genomic region upstream of miR-122 uncovered hyper-methylation in hESCs and HCCs, while the same region is de-methylated and occupied by a transcription initiating protein, RNA polymerase II (RNAPII), in hPHs. These findings indicate that one possible mechanism by which hESC self-renewal is modulated in quiescent hepatic derivatives of hESCs is through the regulatory activity of a differentiated cell-specific miR-122, and that a failure to properly turn “on” this miRNA is observed in uncontrollably proliferating HCCs.


Genome Research | 2008

Using ChIP-chip technology to reveal common principles of transcriptional repression in normal and cancer cells

Vitalina M. Komashko; Luis G. Acevedo; Sharon L. Squazzo; Sushma Iyengar; Alina Rabinovich; Henriette O'Geen; Roland D. Green; Peggy J. Farnham

We compared 12 different cell populations, including embryonic stem cells before and during differentiation into embryoid bodies as well as various types of normal and tumor cells to determine if pluripotent versus differentiated cell types use different mechanisms to establish their transcriptome. We first identified genes that were not expressed in the 12 different cell populations and then determined which of them were regulated by histone methylation, DNA methylation, at the step of productive elongation, or by the inability to establish a preinitiation complex. For these experiments, we performed chromatin immunoprecipitation using antibodies to H3me3K27, H3me3K9, 5-methyl-cytosine, and POLR2A. We found that (1) the percentage of low expressed genes bound by POLR2A, H3me3K27, H3me3K9, or 5-methyl-cytosine is similar in all 12 cell types, regardless of differentiation or neoplastic state; (2) a gene is generally repressed by only one mechanism; and (3) distinct classes of genes are repressed by certain mechanisms. We further characterized two transitioning cell populations, 3T3 cells progressing from G0/G1 into S phase and mES cells differentiating into embryoid bodies. We found that the transient regulation through the cell cycle was achieved predominantly by changes in the recruitment of the general transcriptional machinery or by post-POLR2A recruitment mechanisms. In contrast, changes in chromatin silencing were critical for the permanent changes in gene expression in cells undergoing differentiation.


Molecular Cancer Research | 2012

Human ESC self-renewal promoting microRNAs induce epithelial-mesenchymal transition in hepatocytes by controlling the PTEN and TGFβ tumor suppressor signaling pathways.

Christine J. Jung; Sushma Iyengar; Kimberly R. Blahnik; Joy X. Jiang; Candice Tahimic; Natalie J. Török; Ralph W. deVere White; Peggy J. Farnham; Mark A. Zern

The self-renewal capacity ascribed to embryonic stem cells (ESC) is reminiscent of cancer cell proliferation, raising speculation that a common network of genes may regulate these traits. A search for general regulators of these traits yielded a set of microRNAs for which expression is highly enriched in human ESCs and liver cancer cells (HCC) but attenuated in differentiated quiescent hepatocytes. Here, we show that these microRNAs promote hESC self-renewal, as well as HCC proliferation, and when overexpressed in normally quiescent hepatocytes, induce proliferation and activate cancer signaling pathways. Proliferation in hepatocytes is mediated through translational repression of Pten, Tgfbr2, Klf11, and Cdkn1a, which collectively dysregulates the PI3K/AKT/mTOR and TGFβ tumor suppressor signaling pathways. Furthermore, aberrant expression of these miRNAs is observed in human liver tumor tissues and induces epithelial–mesenchymal transition in hepatocytes. These findings suggest that microRNAs that are essential in normal development as promoters of ESC self-renewal are frequently upregulated in human liver tumors and harbor neoplastic transformation potential when they escape silencing in quiescent human hepatocytes. Mol Cancer Res; 10(7); 979–91. ©2012 AACR.


BMC Bioinformatics | 2008

De novo identification of in vivo binding sites from ChIP-chip data

Victor X. Jin; Alina Rabinovich; Henny O'Geen; Sushma Iyengar; Peggy J. Farnham

Poster presentation Advances in high-throughput technologies such as ChIPchip and the completion of human genomic sequences allow analysis of the mechanisms of gene regulation on a systems level. In this study, we have developed a computational genomics approach (ChIPModules) and a motif discovery approach (ChIPMotifs) to mine the ChIP-chip data. The ChIPModules approach begins with experimentally determined binding sites and integrates positional weight matrices, a comparative genomics approach, and statistical learning methods to identify transcriptional regulatory modules. Using E2F1 ChIP-chip data performed on ENCODE regions in both HeLa and MCF7 cells, we have identified five regulatory modules for E2F1. One of modules was validated by using ChIP-chip with arrays containing ~14,000 human promoters. The ChIPMotifs approach incorporates a bootstrap re-sampling method to statistically infer the optimal cutoff threshold for a position weight matrix (PWM) of a motif identified from ChIP-chip data by ab initio motif discovery programs. Using OCT4 ChIP-chip data, we developed an in vivo OCT4 PWM. We then used this PWM and our ChIPModules to identify transcription factors co-localizing with OCT4 in a testicular germ cell tumor (Ntera2 cells).


PLOS Genetics | 2005

Genome-Wide Analysis of KAP1 Binding Suggests Autoregulation of KRAB-ZNFs

Henriette O'Geen; Sharon L. Squazzo; Sushma Iyengar; Kim Blahnik; John L. Rinn; Howard Y. Chang; Roland D. Green; Peggy J. Farnham


Genome Research | 2007

Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches

Victor X. Jin; Henriette O'Geen; Sushma Iyengar; Roland D. Green; Peggy J. Farnham

Collaboration


Dive into the Sushma Iyengar's collaboration.

Top Co-Authors

Avatar

Peggy J. Farnham

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor X. Jin

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Korf

University of California

View shared research outputs
Top Co-Authors

Avatar

Joy X. Jiang

University of California

View shared research outputs
Top Co-Authors

Avatar

Lei Dou

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge